MATH 614
Dynamical Systems and Chaos

Lecture 4:
 Itineraries.
 Cantor sets.

Logistic map

The logistic map is any of the family of quadratic maps $F_{\mu}(x)=\mu x(1-x)$ depending on the parameter $\mu \in \mathbb{R}$.

If $\mu>1$, then for any $x<0$ the orbit $x, F_{\mu}(x), F_{\mu}^{2}(x), \ldots$ is decreasing and diverges to $-\infty$. Besides, the interval $(1, \infty)$ is mapped onto $(-\infty, 0)$. Hence all nontrivial dynamics (if any) is concentrated on the interval $I=[0,1]$.

Logistic map: $\mu>4$

The interval $I=[0,1]$ is invariant under the map F_{μ} for $0 \leq \mu \leq 4$. In the case $\mu>4$, this interval splits into 3 subintervals: $I=I_{0} \cup A_{0} \cup I_{1}$, where closed intervals $I_{0}=\left[0, x_{0}\right]$ and $I_{1}=\left[x_{1}, 1\right]$ are mapped monotonically onto I while an open interval $A_{0}=\left(x_{0}, x_{1}\right)$ is mapped onto ($\left.1, \mu / 4\right]$.

Logistic map: $\mu>4$

The splitting points satisfy $F_{\mu}\left(x_{0}\right)=F_{\mu}\left(x_{1}\right)=1$. Since $F_{\mu}(x)=1 \Longleftrightarrow \mu x(1-x)=1 \Longleftrightarrow x^{2}-x+\mu^{-1}=0$, we obtain $\quad x_{0}=\frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{\mu}}, \quad x_{1}=\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{\mu}}$.

For any interval $J \subset I$, the preimage $F_{\mu}^{-1}(J)$ consists of two intervals $J_{0} \subset I_{0}$ and $J_{1} \subset I_{1}$. Each of the intervals J_{0} and J_{1} is mapped monotonically onto J. If the interval J is closed (resp. open), then so are the intervals J_{0} and J_{1}.

Let us define sets A_{1}, A_{2}, \ldots inductively by $A_{n}=F_{\mu}^{-1}\left(A_{n-1}\right)$, $n=1,2, \ldots$ Then A_{1} consists of two disjoint open intervals, A_{2} consists of 4 disjoint open intervals, and so on. In general, the set A_{n} consists of 2^{n} disjoint open intervals.
It follows by induction on n that $A_{n}=\left\{x \in I \mid F_{\mu}^{n}(x) \in A_{0}\right\}$, $n=0,1,2, \ldots$ As a consequence, the sets $A_{0}, A_{1}, A_{2}, \ldots$ are disjoint from each other.

Let $\Lambda=I \backslash\left(A_{0} \cup A_{1} \cup A_{2} \cup \ldots\right)$. Then Λ is the set of all points $x \in \mathbb{R}$ such that the orbit $O^{+}(x)$ is contained in I. Notice that $F_{\mu}(\Lambda) \subset \Lambda$. Hence the restriction of the map F_{μ} to the set Λ defines a new dynamical system.

Itineraries

Any element of the set Λ belongs to either I_{0} or I_{1}. For any $x \in \Lambda$ let $S(x)=\left(s_{0} s_{1} s_{2} \ldots\right)$ be an infinite sequence of 0 's and 1 's defined so that $F_{\mu}^{n}(x) \in l_{s_{n}}$ for $n=0,1,2, \ldots$ The sequence $S(x)$ is called the itinerary of the point x.

Let Σ_{2} denote the set of all infinite sequences of 0 's and 1 's. Then the itinerary can be regarded as a map $S: \Lambda \rightarrow \Sigma_{2}$. If $S(x)=\left(s_{0} s_{1} s_{2} \ldots\right)$, then $S\left(F_{\mu}(x)\right)=\left(s_{1} s_{2} \ldots\right)$. Therefore we have a commutative diagram

that is, $S \circ F_{\mu}=\sigma \circ S$, where $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is a transformation defined by $\sigma\left(s_{0} s_{1} s_{2} \ldots\right)=\left(s_{1} s_{2} \ldots\right)$. This transformation is called the shift.

Now we are going to define a closed interval $I_{s_{0} s_{1} \ldots s_{n}} \subset I$ for any finite sequence $s_{0} s_{1} \ldots s_{n}$ of 0 's an 1's. The intervals I_{0} and I_{1} are already defined. The others are defined inductively (induction on the length of the sequence):

$$
I_{s_{0} s_{1} \ldots s_{n}}=I_{s_{0}} \cap F_{\mu}^{-1}\left(I_{s_{1} \ldots s_{n}}\right) .
$$

These intervals have the following properties:

- F_{μ} maps $I_{s_{0} S_{1} \ldots s_{n}}$ monotonically onto $I_{s_{1} \ldots s_{n}}$;
- F_{μ}^{n+1} maps $I_{s_{0} S_{1} \ldots s_{n}}$ monotonically onto I;
- $I_{s_{0} s_{1} \ldots s_{n}}$ consists of all points x such that $x \in I_{s_{0}}$,
$F_{\mu}(x) \in I_{s_{1}}, F_{\mu}^{2}(x) \in I_{s_{2}}, \ldots, F_{\mu}^{n}(x) \in I_{s_{n}}$;
- intervals $I_{S_{0} s_{1} \ldots s_{n}}$ and $I_{t_{0} t_{1} \ldots t_{n}}$ are disjoint if the sequences $s_{0} s_{1} \ldots s_{n}$ and $t_{0} t_{1} \ldots t_{n}$ are not the same;
- for any infinite sequence $\left(s_{0} s_{1} s_{2} \ldots\right) \in \Sigma_{2}$, the intervals $I_{s_{0}}, I_{s_{0} s_{1}}, l_{s_{0} s_{1} s_{2}}, \ldots$ are nested, i.e., $I_{s_{0} s_{1} \ldots s_{n} s_{n+1}} \subset I_{s_{0} s_{1} \ldots s_{n}}$ for $n=0,1,2, \ldots$;
- for any infinite sequence $\mathbf{s}=\left(s_{0} s_{1} s_{2} \ldots\right) \in \Sigma_{2}$,
$S^{-1}(\mathbf{s})=I_{s_{0}} \cap I_{s_{0} s_{1}} \cap I_{s_{0} S_{1} s_{2}} \cap \ldots$

By the above for any infinite sequence $\mathbf{s} \in \Sigma_{2}$ the preimage $S^{-1}(\mathbf{s})$ is the intersection of nested closed intervals. Therefore $S^{-1}(\mathbf{s})$ is either a point or a closed interval. In particular, the preimage is never empty so that the itinerary map S is onto.

The construction of the set Λ and the itinerary map $S: \Lambda \rightarrow \Sigma_{2}$ can be performed for maps more general than the logistic map $F_{\mu}, \mu>4$. Namely, it is enough to consider any continuous map $f: I \rightarrow \mathbb{R}$ satisfying the following properties:

- $f(0)=f(1)=0$;
- there exists a point $x_{\max } \in(0,1)$ such that f is strictly increasing on $\left[0, x_{\max }\right]$ and strictly decreasing on $\left[x_{\text {max }}, 1\right]$;
- $f\left(x_{\max }\right)>1$.

Although the itinerary map is always onto, it need not be one-to-one.

Tent map

The tent map is any of a family of piecewise linear maps

$$
T_{\mu}(x)=\mu \min (x, 1-x)=\left\{\begin{array}{l}
\mu x \text { if } x<1 / 2 \\
\mu(1-x) \text { if } x \geq 1 / 2
\end{array}\right.
$$

depending on the parameter $\mu \in \mathbb{R}$.

The set $\Lambda=\Lambda_{\mu}$ and the itinerary map $S=S_{\mu}$ can be constructed when $\mu>2$.

Cantor set

In the case $\mu=3$, the interval A_{0} is the middle third of I so that Λ_{3} is the Cantor Middle-Thirds Set.

The set Λ_{3} consists of those points $x \in[0,1]$ that admit a ternary expansion $0 . s_{1} s_{2} \ldots$ without any 1 's (only 0 's and 2 's), in which case
$S_{3}(x)=\left(\bar{s}_{1} \bar{s}_{2} \ldots\right)$, where $\overline{0}=0$ and $\overline{2}=1$.
For any $\mu>2$, the set Λ_{μ} is a fractal set of dimension $\log _{\mu} 2<1$.

General Cantor sets

Definition. A subset Λ of the real line \mathbb{R} is called a (general) Cantor set if it is

- nonempty,
- bounded,
- closed,
- totally disconnected, which means that Λ contains no intervals, and
- perfect, which means that Λ has no isolated points.

Theorem Any two Cantor sets are homeomorphic. That is, if Λ and Λ^{\prime} are Cantor sets, then there exists a homeomorphism $\phi: \Lambda \rightarrow \Lambda^{\prime}$.
Furthermore, the homeomorphism ϕ can be chosen strictly increasing, in which case it can be extended to a homeomorphism $\tilde{\phi}: \mathbb{R} \rightarrow \mathbb{R}$.

