MATH 614 Dynamical Systems and Chaos Lecture 5: Cantor sets (continued). Metric and topological spaces. Symbolic dynamics.

Cantor Middle-Thirds Set

General Cantor sets

Definition. A subset Λ of the real line \mathbb{R} is called a (general) **Cantor set** if it is

- nonempty,
- compact, which means that Λ is bounded and closed,
- $\bullet\,$ totally disconnected, which means that Λ contains no intervals, and
 - perfect, which means that Λ has no isolated points.

Theorem Any two Cantor sets are homeomorphic. That is, if Λ and Λ' are Cantor sets, then there exists a homeomorphism $\phi : \Lambda \to \Lambda'$.

Furthermore, the homeomorphism ϕ can be chosen strictly increasing, in which case it can be extended to a homeomorphism $\tilde{\phi} : \mathbb{R} \to \mathbb{R}$.

An open subset $U \subset \mathbb{R}$ is a union of open intervals. An open interval (a, b) is called a **maximal subinterval** of U if there is no other interval (c, d) such that $(a, b) \subset (c, d) \subset U$.

Lemma 1 Any point of U is contained in a maximal subinterval.

Lemma 2 Finite endpoints of a maximal subinterval do not belong to U.

Lemma 3 Distinct maximal subintervals are disjoint.

Lemma 4 There are at most countably many maximal subintervals.

Lemma 5 If Λ is a Cantor set, then for any two maximal subintervals of $\mathbb{R} \setminus \Lambda$ there is another maximal subinterval that lies between them.

Lemma 6 If Λ, Λ' are Cantor sets sets then there exists a monotone one-to-one correspondence between maximal subintervals of their complements.

Unimodal maps

Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous map such that

•
$$f(0) = f(1) = 0;$$

• there exists a point $x_{\max} \in (0, 1)$ such that f is strictly increasing on $(-\infty, x_{\max}]$ and strictly decreasing on $[x_{\max}, \infty)$;

•
$$f(x_{\max}) > 1$$
.

The map f is called **unimodal**.

Itinerary map

Let $f : \mathbb{R} \to \mathbb{R}$ be a unimodal map, Λ be the set of all points $x \in \mathbb{R}$ such that $O_f^+(x) \subset [0, 1]$, and $S : \Lambda \to \Sigma_2$ be the **itinerary map** introduced in the previous lecture.

Proposition 1 The set Λ is compact and has no isolated points.

Proposition 2 $S \circ f = \sigma \circ S$ on Λ , where $\sigma : \Sigma_2 \to \Sigma_2$ is the shift map.

Proposition 3 The itinerary map *S* is onto.

Proposition 4 The set Λ is a Cantor set if and only if the itinerary map *S* is one-to-one.

Metric space

Definition. Given a nonempty set X, a **metric** (or **distance function**) on X is a function $d : X \times X \to \mathbb{R}$ that satisfies the following conditions:

• (positivity) $d(x, y) \ge 0$ for all $x, y \in X$; moreover, d(x, y) = 0 if and only if x = y;

• (symmetry) d(x,y) = d(y,x) for all $x, y \in X$;

• (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a **metric space**.

Examples of metric spaces

• Real line
$$X = \mathbb{R}, \ d(x, y) = |y - x|.$$

• Euclidean space

$$X = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}$.

- Normed vector space
- X: vector space with a norm $\|\cdot\|$, $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} \mathbf{x}\|$.
- Discrete metric space

X: any nonempty set, d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y.

• Subspace of a metric space

X: nonempty subset of a metric space Y with a distance function $\rho: Y \times Y \to \mathbb{R}$, d is the restriction of ρ to $X \times X$.

Convergence and continuity

Suppose (X, d) is a metric space, that is, X is a set and d is a metric on X.

We say that a sequence of points $x_1, x_2, ...$ of the set X converges to a point $y \in X$ if $d(x_n, y) \to 0$ as $n \to \infty$.

Given another metric space (Y, ρ) and a function $f: X \to Y$, we say that f is **continuous at a point** $x_0 \in X$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, x_0) < \delta \implies \rho(f(x), f(x_0)) < \varepsilon$.

We say that the function f is **continuous on a set** $U \subset X$ if it is continuous at each point of U.

Open sets

Let (X, d) be a metric space. For any $x_0 \in X$ and $\varepsilon > 0$ we define the **open ball** (or simply **ball**) $B_{\varepsilon}(x_0)$ of radius ε centered at x_0 by $B_{\varepsilon}(x_0) = \{x \in X \mid d(x, x_0) < \varepsilon\}$. The ball $B_{\varepsilon}(x_0)$ is also called the ε -neighborhood of x_0 .

A subset U of the metric space X is called **open** if for every point $x \in U$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$.

Let (Y, ρ) be another metric space and $f : X \to Y$ be a function.

Proposition 1 The function f is continuous at a point $x \in X$ if and only if for every open set $W \subset Y$ containing f(x) there is an open set $U \subset X$ containing x such that $f(U) \subset W$.

Proposition 2 The function f is continuous on the entire set X if and only if for any open set $W \subset Y$ the preimage $f^{-1}(W)$ is an open set in X.

Topological space

Definition. Given a nonempty set X, a **topology** on X is a collection \mathcal{U} of subsets of X such that

- $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$,
- any intersection of finitely many elements of $\, \mathcal{U}$ is also in $\, \mathcal{U}, \,$
- any union of elements of \mathcal{U} is also in \mathcal{U} .

Elements of \mathcal{U} are referred to as **open sets** of the topology. A set endowed with a topology is called a **topological space**.

We say that a sequence of points x_1, x_2, \ldots of the topological space X converges to a point $y \in X$ if for every open set $U \in \mathcal{U}$ containing y there exists a natural number n_0 such that $x_n \in U$ for $n \ge n_0$.

Given another topological space Y and a function $f : X \to Y$, we say that f is **continuous** if for any open set $W \subset Y$ the preimage $f^{-1}(W)$ is an open set in X.

Examples of topological spaces

• Metric space

X: a metric space, \mathcal{U} : the set of all open subsets of X (\mathcal{U} is referred to as the topology induced by the metric).

- Trivial topology
- X: any nonempty set, $U = \{\emptyset, X\}$.
 - Discrete topology
- X: any nonempty set, \mathcal{U} : the set of all subsets of X.
 - Subspace of a topological space

X: nonempty subset of a topological space Y with a topology \mathcal{W} , $\mathcal{U} = \{ U \cap X \mid U \in \mathcal{W} \}.$

Space of infinite sequences

Let \mathcal{A} be a finite set. We denote by $\Sigma_{\mathcal{A}}$ the set of all infinite sequences $\mathbf{s} = (s_1 s_2 \dots), s_i \in \mathcal{A}$. Elements of $\Sigma_{\mathcal{A}}$ are also referred to as **infinite words** over the **alphabet** \mathcal{A} .

For any finite sequence $s_1s_2...s_n$ of elements of \mathcal{A} let $C(s_1s_2...s_n)$ denote the set of all infinite words $\mathbf{s} \in \Sigma_{\mathcal{A}}$ that begin with this sequence. The sets $C(s_1s_2...s_n)$ are called **cylinders**. Let \mathcal{U} be the collection of all subsets of $\Sigma_{\mathcal{A}}$ that can be represented as unions of cylinders.

$\label{eq:proposition 1} \ \mathcal{U} \ \text{is a topology on } \Sigma_{\mathcal{A}}.$

The topological space $(\Sigma_{\mathcal{A}}, \mathcal{U})$ is **metrizable**, which means that the topology \mathcal{U} is induced by a metric on $\Sigma_{\mathcal{A}}$. For any $\mathbf{s}, \mathbf{t} \in \Sigma_{\mathcal{A}}$ let $d(\mathbf{s}, \mathbf{t}) = 2^{-n}$ if $s_i = t_i$ for $1 \le i \le n$ while $s_{n+1} \ne t_{n+1}$. Also, let $d(\mathbf{s}, \mathbf{t}) = 0$ if $s_i = t_i$ for all $i \ge 1$.

Proposition 2 The function *d* is a metric on Σ_A that induces the topology \mathcal{U} .

Symbolic dynamics

The symbolic dynamics is concerned with the study of some continuous transformations of the topological space Σ_A of infinite words over a finite alphabet A. The most important of them is the **shift** transformation $\sigma : \Sigma_A \to \Sigma_A$ defined by $\sigma(s_0 s_1 s_2 \dots) = (s_1 s_2 \dots)$.

Proposition The shift transformation is continuous.

Proof: We have to show that for any open set $W \subset \Sigma_A$ the preimage $\sigma^{-1}(W)$ is also open. The set W is a union of cylinders: $W = \bigcup_{\beta \in B} C_{\beta}$. Since

$$\sigma^{-1}\Big(igcup_{eta\in B} C_{eta}\Big) = igcup_{eta\in B} \sigma^{-1}(C_{eta}),$$

it is enough to show that the preimage of any cylinder C_{β} is open. Let $C_{\beta} = C(s_1s_2...s_n)$. Then $\sigma^{-1}(C_{\beta})$ is the union of cylinders $C(s_0s_1s_2...s_n)$, $s_0 \in A$, hence it is open.

Continuity of the itinerary map

Let $f : \mathbb{R} \to \mathbb{R}$ be a unimodal map, Λ be the set of all points $x \in \mathbb{R}$ such that $O_f^+(x) \subset [0, 1]$, and $S : \Lambda \to \Sigma_2 = \Sigma_{\{0,1\}}$ be the itinerary map.

Proposition The itinerary map *S* is continuous.

Proof: Since every open subset of Σ_2 is a union of cylinders, it is enough to show that for any cylinder $C = C(s_0 s_1 \dots s_n)$ the preimage $S^{-1}(C)$ is an open subset of Λ , i.e., $S^{-1}(C) = U \cap \Lambda$, where U is an open subset of \mathbb{R} . Clearly, $S^{-1}(C) = I_{s_0s_1...s_n} \cap \Lambda$, where $I_{s_0s_1...s_n} = \{ x \in [0,1] \mid f^k(x) \in I_{s_k}, \ 0 \le k \le n \}.$ We know that $I_{s_0s_1...s_n}$ is a closed interval and the set Λ is covered by 2^{n+1} disjoint closed intervals of the form I_{t_0,t_1,\ldots,t_n} , where each t_i is 0 or 1. It follows that there exists an open

interval U such that $S^{-1}(C) = I_{s_0 s_1 \dots s_n} \cap \Lambda = U \cap \Lambda$.