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Dynamical Systems and Chaos

Lecture 5:
Cantor sets (continued).

Metric and topological spaces.
Symbolic dynamics.



Cantor Middle-Thirds Set



General Cantor sets

Definition. A subset Λ of the real line R is called a (general)
Cantor set if it is

• nonempty,

• compact, which means that Λ is bounded and closed,

• totally disconnected, which means that Λ contains no
intervals, and

• perfect, which means that Λ has no isolated points.

Theorem Any two Cantor sets are homeomorphic. That is,
if Λ and Λ′ are Cantor sets, then there exists a
homeomorphism φ : Λ → Λ′.

Furthermore, the homeomorphism φ can be chosen strictly
increasing, in which case it can be extended to a
homeomorphism φ̃ : R → R.



An open subset U ⊂ R is a union of open intervals. An open
interval (a, b) is called a maximal subinterval of U if there
is no other interval (c, d) such that (a, b) ⊂ (c, d) ⊂ U.

Lemma 1 Any point of U is contained in a maximal
subinterval.

Lemma 2 Finite endpoints of a maximal subinterval do not
belong to U.

Lemma 3 Distinct maximal subintervals are disjoint.

Lemma 4 There are at most countably many maximal
subintervals.

Lemma 5 If Λ is a Cantor set, then for any two maximal
subintervals of R \ Λ there is another maximal subinterval
that lies between them.

Lemma 6 If Λ,Λ′ are Cantor sets sets then there exists a
monotone one-to-one correspondence between maximal
subintervals of their complements.



Unimodal maps

Let f : R → R be a continuous map such that

• f (0) = f (1) = 0;
• there exists a point xmax ∈ (0, 1) such that f is strictly
increasing on (−∞, xmax] and strictly decreasing on [xmax,∞);

• f (xmax) > 1.

The map f is called unimodal.



Itinerary map

Let f : R → R be a unimodal map, Λ be the set of all points
x ∈ R such that O+

f
(x) ⊂ [0, 1], and S : Λ → Σ2 be the

itinerary map introduced in the previous lecture.

Proposition 1 The set Λ is compact and has no isolated
points.

Proposition 2 S ◦ f = σ ◦ S on Λ, where σ : Σ2 → Σ2 is
the shift map.

Proposition 3 The itinerary map S is onto.

Proposition 4 The set Λ is a Cantor set if and only if the
itinerary map S is one-to-one.



Metric space

Definition. Given a nonempty set X , a metric (or distance
function) on X is a function d : X × X → R that satisfies
the following conditions:

• (positivity) d(x , y ) ≥ 0 for all x , y ∈ X ; moreover,
d(x , y ) = 0 if and only if x = y ;

• (symmetry) d(x , y ) = d(y , x) for all x , y ∈ X ;

• (triangle inequality) d(x , y ) ≤ d(x , z) + d(z , y ) for all
x , y , z ∈ X .
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A set endowed with a metric is called a metric space.



Examples of metric spaces

• Real line

X = R, d(x , y ) = |y − x |.

• Euclidean space

X = R
n, d(x, y) =

√

(y1− x1)2+ (y2− x2)2+ · · ·+ (yn − xn)2.

• Normed vector space

X : vector space with a norm ‖ · ‖, d(x, y) = ‖y− x‖.

• Discrete metric space

X : any nonempty set, d(x , y ) = 1 if x 6= y and d(x , y ) = 0
if x = y .

• Subspace of a metric space

X : nonempty subset of a metric space Y with a distance
function ρ : Y × Y → R, d is the restriction of ρ to X × X .



Convergence and continuity

Suppose (X , d) is a metric space, that is, X is a

set and d is a metric on X .

We say that a sequence of points x1, x2, . . . of the
set X converges to a point y ∈ X if d(xn, y) → 0

as n → ∞.

Given another metric space (Y , ρ) and a function

f : X → Y , we say that f is continuous at a
point x0 ∈ X if for every ε > 0 there exists δ > 0
such that d(x , x0) < δ =⇒ ρ(f (x), f (x0)) < ε.

We say that the function f is continuous on a set
U ⊂ X if it is continuous at each point of U .



Open sets

Let (X , d) be a metric space. For any x0 ∈ X and ε > 0 we
define the open ball (or simply ball) Bε(x0) of radius ε
centered at x0 by Bε(x0) = {x ∈ X | d(x , x0) < ε}.
The ball Bε(x0) is also called the ε-neighborhood of x0.

A subset U of the metric space X is called open if for every
point x ∈ U there exists ε > 0 such that Bε(x) ⊂ U.

Let (Y , ρ) be another metric space and f : X → Y be a
function.

Proposition 1 The function f is continuous at a point x ∈ X

if and only if for every open set W ⊂ Y containing f (x) there
is an open set U ⊂ X containing x such that f (U) ⊂ W .

Proposition 2 The function f is continuous on the entire set
X if and only if for any open set W ⊂ Y the preimage
f −1(W ) is an open set in X .



Topological space

Definition. Given a nonempty set X , a topology on X is a
collection U of subsets of X such that

• ∅ ∈ U and X ∈ U ,
• any intersection of finitely many elements of U is also in U ,
• any union of elements of U is also in U .

Elements of U are referred to as open sets of the topology.
A set endowed with a topology is called a topological space.

We say that a sequence of points x1, x2, . . . of the topological
space X converges to a point y ∈ X if for every open set
U ∈ U containing y there exists a natural number n0 such
that xn ∈ U for n ≥ n0.

Given another topological space Y and a function f : X → Y ,
we say that f is continuous if for any open set W ⊂ Y the
preimage f −1(W ) is an open set in X .



Examples of topological spaces

• Metric space

X : a metric space, U : the set of all open subsets of X
(U is referred to as the topology induced by the metric).

• Trivial topology

X : any nonempty set, U = {∅,X}.

• Discrete topology

X : any nonempty set, U : the set of all subsets of X .

• Subspace of a topological space

X : nonempty subset of a topological space Y with a topology
W, U = {U ∩ X | U ∈ W}.



Space of infinite sequences

Let A be a finite set. We denote by ΣA the set of all infinite
sequences s = (s1s2 . . . ), si ∈ A. Elements of ΣA are also
referred to as infinite words over the alphabet A.

For any finite sequence s1s2 . . . sn of elements of A let
C (s1s2 . . . sn) denote the set of all infinite words s ∈ ΣA that
begin with this sequence. The sets C (s1s2 . . . sn) are called
cylinders. Let U be the collection of all subsets of ΣA that
can be represented as unions of cylinders.

Proposition 1 U is a topology on ΣA.

The topological space (ΣA,U) is metrizable, which means
that the topology U is induced by a metric on ΣA. For any
s, t ∈ ΣA let d(s, t) = 2−n if si = ti for 1 ≤ i ≤ n while
sn+1 6= tn+1. Also, let d(s, t) = 0 if si = ti for all i ≥ 1.

Proposition 2 The function d is a metric on ΣA that
induces the topology U .



Symbolic dynamics

The symbolic dynamics is concerned with the study of some
continuous transformations of the topological space ΣA of
infinite words over a finite alphabet A. The most important
of them is the shift transformation σ : ΣA → ΣA defined by
σ(s0s1s2 . . . ) = (s1s2 . . . ).

Proposition The shift transformation is continuous.

Proof: We have to show that for any open set W ⊂ ΣA the
preimage σ−1(W ) is also open. The set W is a union of
cylinders: W =

⋃

β∈B

Cβ. Since

σ−1

(

⋃

β∈B

Cβ

)

=
⋃

β∈B

σ−1(Cβ),

it is enough to show that the preimage of any cylinder Cβ is
open. Let Cβ = C (s1s2 . . . sn). Then σ−1(Cβ) is the union
of cylinders C (s0s1s2 . . . sn), s0 ∈ A, hence it is open.



Continuity of the itinerary map

Let f : R → R be a unimodal map, Λ be the set of all points
x ∈ R such that O+

f
(x) ⊂ [0, 1], and S : Λ → Σ2 = Σ{0,1}

be the itinerary map.

Proposition The itinerary map S is continuous.

Proof: Since every open subset of Σ2 is a union of cylinders,
it is enough to show that for any cylinder C = C (s0s1 . . . sn)
the preimage S−1(C ) is an open subset of Λ, i.e.,
S−1(C ) = U ∩ Λ, where U is an open subset of R.

Clearly, S−1(C ) = Is0s1...sn ∩ Λ, where

Is0s1...sn = {x ∈ [0, 1] | f k(x) ∈ Isk , 0 ≤ k ≤ n}.

We know that Is0s1...sn is a closed interval and the set Λ is
covered by 2n+1 disjoint closed intervals of the form It0t1...tn ,
where each ti is 0 or 1. It follows that there exists an open
interval U such that S−1(C ) = Is0s1...sn ∩ Λ = U ∩ Λ.


