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Dynamical Systems and Chaos

Lecture 7:

Compact sets.
Topological conjugacy (continued).

Definition of chaos (revisited).



Compact sets

Definition. A subset E of a topological space X is compact if
any covering of E by open sets admits a finite subcover. The
subset E is sequentially compact if any sequence of its
elements has a subsequence converging to an element of E .

Proposition 1 For any set E ⊂ X , compactness implies
sequential compactness. If the topological space X is
metrizable, then the converse is true as well.

Proposition 2 Any closed subset of a compact set is also
compact.

We say that a topological space X is Hausdorff if any two
distinct elements of X have disjoint neighborhoods. It is easy
to show that any metrizable topological space is Hausdorff.

Proposition 3 In a Hausdorff topological space, every
compact set is closed.



Proposition 4 A subset of the Euclidean space R
n is

compact if and only if it is closed and bounded.

Proposition 5 The topological space ΣA of infinite words
over a finite alphabet A is compact.

Proof: Since the topological space ΣA is metrizable, it is
enough to prove sequential compactness. Suppose
s(1), s(2), . . . is a sequence of infinite words over the alphabet
A. Note that a subsequence s(n1), s(n2), s(n3), . . . converges to
some s ∈ ΣA if and only if every finite beginning of s is also a
beginning of s(nk ) for k large enough.

Since A is a finite set, the number of finite words over A of
any prescribed length is finite. It follows by induction that
there exists a sequence of letters s1, s2, . . . such that for any
k ∈ N the finite word s1s2 . . . sk occurs as a beginning of s(n)

for infinitely many n’s. Then we choose indices n1 < n2 < . . .

so that s1s2 . . . sk is a beginning of s(nk ) for k = 1, 2, . . . It
follows that s(nk ) → s = (s1s2s3 . . . ) as k → ∞.



Compact sets and continuous maps

Proposition 6 The image of a compact set under a
continuous map is also compact.

Proposition 7 Any continuous, real-valued function on a
compact set attains its maximal and minimal values.

Proposition 8 Suppose that a continuous map f : X → Y

is invertible. If the topological space X is compact and Y is
Hausdorff, then the inverse map f −1 is continuous as well.

Proposition 9 Suppose (X , d) and (Y , ρ) are metric
spaces. If X is compact then any continuous function
f : X → Y is uniformly continuous, which means that for
any ε > 0 there exists δ > 0 such that d(x , y ) < δ implies
ρ
(

f (x), f (y )
)

< ε for all x , y ∈ X .



Topological conjugacy

Suppose f : X → X and g : Y → Y are transformations of
topological spaces.

Definition. We say that a map φ : X → Y is a
semi-conjugacy of f with g if φ is onto and φ ◦ f = g ◦ φ.
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The map φ is a conjugacy if, additionally, it is invertible.
The map φ is a topological conjugacy if, additionally, it is a
homeomorphism, which means that both φ and φ−1 are
continuous. In the latter case, we say that the maps f and g

are topologically conjugate. Note that f = φ−1gφ and
g = φf φ−1.



Unimodal maps (revisited)

Let f : R → R be a unimodal map, Λ be the set of all points
x ∈ R such that O+

f (x) ⊂ [0, 1], and S : Λ → Σ2 = Σ{0,1}

be the itinerary map.

Then S is a continuous semi-conjugacy of f |Λ with the shift.
If S is one-to-one, then S is a topological conjugacy (since Λ
and Σ2 are compact sets).



Topological conjugacy of linear maps

Consider the family of linear maps fλ : R → R given by
fλ(x) = λx , x ∈ R, where λ is a real parameter.

Let us also define another family of maps φα : R → R

depending on a parameter α > 0:

φα(x) =

{

xα if x ≥ 0,

−|x |α if x < 0.

Note that φα is a homeomorphism and φ−1
α = φ1/α. For any

λ, x ≥ 0,

φαfλφ
−1
α (x) = φαfλ(x

1/α) = φα(λx
1/α) = (λx1/α)α = λαx .

Since fλ(−x) = −fλ(x) and φα(−x) = −φα(x) for all x , the
same equality holds for λ ≥ 0 and x < 0. Similarly, for
λ < 0 and any x ∈ R we obtain φαfλφ

−1
α (x) = −|λ|αx .

Therefore φαfλφ
−1
α = fλ′ , where λ′ = φα(λ).



Proposition Two linear maps fλ and fλ′ are topologically
conjugate if and only if one of the following conditions holds:
(i) λ, λ′ < −1, (ii) λ = λ′ = −1, (iii) −1 < λ, λ′ < 0,
(iv) λ = λ′ = 0, (v) 0 < λ, λ′ < 1, (vi) λ = λ′ = 1,
(vii) λ, λ′ > 1.

Proof: If one of the seven conditions holds, then λ′ = φα(λ)
for some α > 0. It follows that φαfλφ

−1
α = fλ′ , in particular,

fλ and fλ′ are topologically conjugate.

If neither condition holds, we need to distinguish fλ from fλ′ by
a property invariant under topological conjugacy. First notice
that f0 is the only linear map that is not one-to-one. Further,
f1 is the identity map and f−1 is distinguished since f 2−1 is the
identity map while f−1 is not. The only fixed point 0 of fλ is
attracting if |λ| < 1 and repelling if |λ| > 1. Finally, for any
x 6= 0 the interval with endpoints x and fλ(x) contains the
fixed point 0 if λ < 0 and does not if λ > 0.



Proposition 1 Suppose f : [0, a] → R and g : [0, b] → R

are continouos maps such that f (0) = g(0) = 0, f (x) < x

for 0 < x ≤ a, and g(x) < x for 0 < x ≤ b. Then f and g

are topologically conjugate.

Let U = (f (a), a). Then U is a wandering domain of the
map f , which means that sets U, f (U), f 2(U), . . . are
disjoint. Similarly, V = (g(b), b) is a wandering domain of g .
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Proposition 2 Suppose f , g : R → R are continuously
differentiable maps such that f (0) = g(0) = 0, 0 < f ′(x) < 1
and 0 < g ′(x) < 1 for all x ∈ R. Then f and g are
topologically conjugate.



Topological transitivity

Suppose f : X → X is a continuous transformation of a
topological space X .

Definition. The map f is topologically transitive if for any
nonempty open sets U,V ⊂ X there exists a natural number
n such that f n(U) ∩ V 6= ∅.

U ∋ x 7−→ f (x) 7−→ f 2(x) 7−→ · · · 7−→ f k(x) ∈ V

Topological transitivity means that the dynamical system f is,
in a sense, indecomposable.

Proposition 1 Topological transitivity is preserved under
topological conjugacy.

Proposition 2 If the map f has a dense orbit, then it is
topologically transitive.

Proposition 3 If X is a metrizable compact space, then any
topologically transitive transformation of X has a dense orbit.



Separation of orbits

Suppose f : X → X is a continuous transformation of a
metric space (X , d).

Definition. We say that f has sensitive dependence on
initial conditions if there is δ > 0 such that, for any x ∈ X

and a neighborhood U of x , there exist y ∈ U and n ≥ 0
satisfying d

(

f n(y ), f n(x)
)

> δ.

We say that the map f is expansive if there is δ > 0 such
that, for any x , y ∈ X , x 6= y , there exists n ≥ 0 satisfying
d
(

f n(y ), f n(x)
)

> δ.

Proposition If X is compact, then changing the metric d to
another metric that induces the same topology cannot affect
sensitive dependence on i.c. and expansiveness of the map f .

Corollary For continuous transformations of compact metric
spaces, sensitive dependence on initial conditions and
expansiveness are preserved under topological conjugacy.



Definition of chaos

Suppose f : X → X is a continuous transformation of a
metric space (X , d).

Definition. We say that the map f is chaotic if

• f has sensitive dependence on initial conditions;
• f is topologically transitive;
• periodic points of f are dense in X .

Proposition 1 For continuous transformations of compact
metric spaces, chaoticity is preserved under topological
conjugacy.

Proposition 2 The shift σ : ΣA → ΣA is chaotic.

Corollary Any dynamical system topologically conjugate to
the shift is chaotic.


