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Dynamical Systems and Chaos

Lecture 8:

Structural stability.
Sharkovskii’s theorem.



Structural stability

Informally, a dynamical system is structurally
stable if its structure is preserved under small
perturbations. To make this notion formal, one has

to specify what it means that the “structure is
preserved” and what is considered a “small

perturbation”.

In the context of topological dynamics, structural
stability usually means that the perturbed system is

topologically conjugate to the original one.

The description of small perturbations varies for
different dynamical systems and so there are various

kinds of structural stability.



• Structural stability within a parametric family.

Suppose fp : Xp → Xp is a dynamical system depending on a
parameter vector p ∈ P, where P ⊂ R

k . Given p0 ∈ P, we
say that fp0 is structurally stable within the family {fp} if
there exists ε > 0 such that for any p ∈ P satisfying
|p− p0| < ε the system fp is topologically conjugate to fp0.

• C r -structural stability for one-dimensional systems.

Let J be an interval of the real line. For any integer r ≥ 0,
let C r (J) denote the set of r times continuously differentiable
functions f : J → R. The C r distance between functions
f , g ∈ C r(J) is given by

dr(f , g)=sup
x∈J

(
|f (x)−g(x)|, |f ′(x)−g ′(x)|, . . . , |f (r)(x)−g (r)(x)|

)
.

We say that a map f ∈ C r (J) is C r -structurally stable if
there exists ε > 0 such that whenever dr(f , g) < ε, it follows
that g is topologically conjugate to f .



Small perturbation

In the first figure, the function g is a C 0-small
perturbation of f , but not a C 1-small one. In the
second figure, the functions f and g are C 1-close

but not C 2-close. In the third figure, f and g are
C 2-close.



Examples of structural stability

• Linear map fλ : R → R, fλ(x) = λx .

The map fλ is structurally stable within the family {fλ} if and
only if λ /∈ {−1, 0, 1}. Besides, it is C 1-structurally stable for
the same values of λ.



Examples of structural stability

• Logistic map Fµ : R → R, Fµ(x) = µx(1− x).

The map Fµ is structurally stable within the family {Fµ} for
µ > 4. Besides, it is C 2-structurally stable for µ > 4 (but
not C 1-structurally stable).



Period set

Suppose J is an interval of the real line and f : J → J is a
continuous map. Let P(f ) be the set of all natural numbers
n for which the map f admits a periodic point of prime period
n (or, equivalently, a periodic orbit that consists of n points).

Question. Which subsets of N can occur as P(f )?

Examples. • f : R → R, f (x) = x + 1.
P(f ) = ∅.

• f : R → R, f (x) = x .
P(f ) = {1}.

• f : R → R, f (x) = −x .
P(f ) = {1, 2}.

• f : R → R, f (x) = µx(1− x), where µ > 4.
The map f has an invariant set Λ such that the restriction f |Λ
is conjugate to the shift on Σ{0,1}. Since the shift admits
periodic points of all prime periods, so does f : P(f ) = N.



Sharkovskii’s ordering

The Sharkovskii ordering is the following strict linear
ordering of the natural numbers:

3 B 5 B 7 B 9 B . . .
B 2 · 3 B 2 · 5 B 2 · 7 B 2 · 9 B . . .
B 22 · 3 B 22 · 5 B 22 · 7 B 22 · 9 B . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . B 2k B . . . B 23 B 22 B 2 B 1.

To be precise, for any integers k1, k2 ≥ 0 and odd natural
numbers p1, p2 we let 2k1p1 B 2k2p2 if and only if one of the
following conditions holds:

• k1 = k2 and 1 < p1 < p2;

• p1, p2 > 1 and k1 < k2;

• p1 > 1 and p2 = 1;

• p1 = p2 = 1 and k1 > k2.



Sharkovskii’s Theorem

Theorem 1 (Sharkovskii) Suppose f : J → J is a
continuous map of an interval J ⊂ R. If f admits a periodic
point of prime period n and n Bm for some m ∈ N, then f

admits a periodic point of prime period m as well.

Definition. A subset E ⊂ N is called a tail of Sharkovskii’s
ordering if n ∈ E and nBm implies m ∈ E for all m, n ∈ N.

Sharkovskii’s Theorem states that the period set P(f ) is such
a tail. For any n ∈ N the set En = {n} ∪ {m ∈ N | n Bm}
is a tail. The only tails that cannot be represented this way
are {2n | n ≥ 0} and the empty set.

Theorem 2 For any tail E of Sharkovskii’s ordering there
exists a continuous map f : R → R such that P(f ) = E .

Remark. For maps of an interval J ⊂ R, Theorem 2 holds
with one exception: if J is bounded and closed, then P(f ) 6= ∅.



Suppose f : J → J is a continuous map of an

interval J ⊂ R. Given two closed bounded
intervals I1, I2 ⊂ J , we write I1 → I2 if f (I1) ⊃ I2
(i.e., if I1 covers I2 under the action of f ).

Lemma 1 If I → I , then the interval I contains a

fixed point of the map f .

Proof: Let I = [a, b]. Since f (I ) ⊃ I , there exist a0, b0 ∈ I

such that f (a0) = a, f (b0) = b. Then a continuous function
g(x) = f (x)− x satisfies g(a0) = a − a0 ≤ 0 and
g(b0) = b − b0 ≥ 0. By the Intermediate Value Theorem, we
have g(c) = 0 for some c between a0 and b0. Then c ∈ I

and f (c) = c.



Lemma 2 If the map f has a periodic orbit, then

it has a fixed point.

Proof: Suppose x is a periodic point of f of prime period n.
In the case n = 1, we are done. Otherwise let x1, x2, . . . , xn
be the list of all points of the orbit O+

f (x) ordered so that
x1 < x2 < · · · < xn. Note that f (xi) 6= xi for all i . In
particular, f (x1) > x1 while f (xn) < xn.

Let j be the largest index satisfying f (xj) > xj . Then j < n,
f (xj) ≥ xj+1, and f (xj+1) ≤ xj . The Intermediate Value
Theorem implies that [xj , xj+1] → [xj , xj+1]. By Lemma 1, the
map f has a fixed point in the interval [xj , xj+1].



Lemma 3 If I → I ′, then there exists a closed interval
I0 ⊂ I such that f maps I0 onto I ′.

Proof: Let I ′ = [a, b]. Then A = I ∩ f −1(a) and
B = I ∩ f −1(b) are nonempty compact sets. It follows that
the distance function d(x , y ) = |y − x | attains its minimum
on the set A× B at some point (x0, y0). Note that x0 6= y0
since A ∩ B = ∅. Let I0 denote the closed interval with
endpoints x0 and y0. Then I0 ⊂ I , the endpoints of I0 are
mapped to a and b, and no interior point of I0 is mapped to a

or b. The Intermediate Value Theorem implies that f (I0) = I ′.

Lemma 4 If I1 → I2 → · · · → In → I1, then there exists a
fixed point x of f n such that x ∈ I1, f (x)∈ I2, . . . , f

n−1(x)∈ In.

Proof: It follows by induction from Lemma 3 that there exist
closed intervals I ′1 ⊂ I1, I ′2 ⊂ I2, . . . , I ′n ⊂ In such that f maps
I ′i onto I ′i+1 for 1 ≤ i ≤ n−1 and also maps I ′n onto I1. As a
consequence, f n maps I ′1 onto I1. Lemma 1 implies that f n

has a fixed point x ∈ I ′1. By construction, f i(x) ∈ I ′i ⊂ Ii for
0 ≤ i ≤ n−1.



Proposition 5 If the map f has a periodic point of prime
period 3, then it has periodic points of any prime period.

Proof: Suppose x1, x2, x3 are points forming a periodic orbit
of f , ordered so that x1 < x2 < x3. We have that either
f (x1) = x2, f (x2) = x3, f (x3) = x1, or else f (x1) = x3,
f (x2) = x1, f (x3) = x2. In the first case, let I1 = [x2, x3] and
I2 = [x1, x2]. Otherwise we let I1 = [x1, x2] and I2 = [x2, x3].
Then I1 → I2 → I1 and I1 → I1.

The map f has a periodic point of prime period 3. By Lemma
2, it also has a fixed point. To find a periodic point of prime
period n, where n = 2 or n ≥ 4, we notice that

I2 → I1 → I1 → · · · → I1
︸ ︷︷ ︸

n−1 times

→ I2.

By Lemma 4, there exists x ∈ I2 such that f n(x) = x and
f i(x) ∈ I1 for 1 ≤ i ≤ n−1. If x /∈ I1, we obtain that n is
the prime period of x . Otherwise x = x2, which leads to a
contradiction.


