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Dynamical Systems and Chaos

Lecture 9:
Sharkovskii’s theorem (continued).



Sharkovskii’s Theorem

The Sharkovskii ordering is the following strict linear
ordering of the natural numbers:

3 B 5 B 7 B 9 B . . .
B 2 · 3 B 2 · 5 B 2 · 7 B 2 · 9 B . . .
B 22 · 3 B 22 · 5 B 22 · 7 B 22 · 9 B . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . B 2k B . . . B 23 B 22 B 2 B 1.

Theorem 1 Suppose f : J → J is a continuous map of an
interval J ⊂ R. If f admits a periodic point of prime period n

and n Bm for some m ∈ N, then f admits a periodic point
of prime period m as well.

Theorem 2 Suppose P is a set of natural numbers such that
n ∈ P and n Bm imply m ∈ P for all m, n ∈ N. Then
there exists a continuous map f : R → R with P as the set of
prime periods of its periodic points.



Suppose f : J → J is a continuous map of an

interval J ⊂ R. Given two closed bounded intervals
I1, I2 ⊂ J , we write and draw I1 → I2 if f (I1) ⊃ I2
(i.e., if I1 covers I2 under the action of f ).

Lemma 1 If I → I , then the interval I contains a
fixed point of the map f .

Lemma 2 If the map f has a periodic orbit, then
it has a fixed point.

Lemma 3 If I → I ′, then there exists a closed

interval I0 ⊂ I such that f maps I0 onto I ′.

Lemma 4 If I1 → I2 → · · · → In → I1, then there
exists a fixed point x of f n such that x ∈ I1,

f (x)∈ I2, . . . , f
n−1(x)∈ In.



Proposition 5 If the map f has a periodic point of prime
period 3, then it has periodic points of any prime period.

Proof: Suppose x1, x2, x3 are points forming a periodic orbit
of f , ordered so that x1 < x2 < x3. We have that either
f (x1) = x2, f (x2) = x3, f (x3) = x1, or else f (x1) = x3,
f (x2) = x1, f (x3) = x2. In the first case, let I1 = [x2, x3] and
I2 = [x1, x2]. Otherwise we let I1 = [x1, x2] and I2 = [x2, x3].
Then � I1 � I2, i.e., I1 → I2 → I1 and I1 → I1.

The map f has a periodic point of prime period 3. By Lemma
2, it also has a fixed point. To find a periodic point of prime
period n, where n = 2 or n ≥ 4, we notice that

I2 → I1 → I1 → · · · → I1
︸ ︷︷ ︸

n−1 times

→ I2.

By Lemma 4, there exists x ∈ I2 such that f n(x) = x and
f i(x) ∈ I1 for 1 ≤ i ≤ n−1. If x /∈ I1, we obtain that n is
the prime period of x . Otherwise x = x2, which leads to a
contradiction.



Proposition 6 If the map f has a periodic point of odd
prime period n ≥ 5, then it has a periodic point of any prime
period m C n.

Proof: It is no loss to assume that f has no periodic points of
odd prime periods p, 1 < p < n. Let x1, x2, . . . , xn be points
of a periodic orbit of prime period n, x1 < x2 < · · · < xn.
First we show that one can choose k ≥ 2 distinct intervals
I1, I2, . . . Ik among [x1, x2], [x2, x3], . . . , [xn−1, xn] that satisfy

Then we show that, in fact, k = n − 1.



First we show that one can choose k ≥ 2 distinct intervals
I1, I2, . . . Ik among [x1, x2], [x2, x3], . . . , [xn−1, xn] that satisfy
I1 → I2 → · · · → Ik → I1 and I1 → I1.

Let I1 = [xj , xj+1], where j is the largest index satisfying
f (xj) > xj . Then f (xj) ≥ xj+1 and f (xj+1) ≤ xj , which
implies that I1 → I1.

Further, there is an interval I
∞

= [xi , xi+1] 6= I1 such that
f (xi) and f (xi+1) are on different sides of I1 so that I

∞
→ I1.

Indeed, otherwise f would move each xi to the other side of I1,
which is impossible since n is odd.

Next there are intervals I2, . . . , Ik of the form [x`, x`+1] such
that I1, I2, . . . , Ik are distinct and I1 → I2 → · · · → Ik = I

∞
.

Clearly, k ≤ n − 1. In fact, k = n− 1 as otherwise we would
get a periodic orbit of prime period n − 2 from the chain

Ik → I1 → I1 → · · · → I1
︸ ︷︷ ︸

n−k−1 times

→ I2 → I3 → · · · → Ik .



For any diagram of this kind, k = n − 1.



As a consequence, Is 6→ It if t > s + 1 and Is 6→ I1 if
1 < s < n − 1. It follows that, up to the mirror image, there
is only one possible ordering of the intervals I1, I2, . . . , In−1:

This leads to a more refined diagram of coverings:



As a consequence, Is 6→ It if t > s + 1 and Is 6→ I1 if
1 < s < n − 1. It follows that, up to the mirror image, there
is only one possible ordering of the intervals I1, I2, . . . , In−1:

This leads to a more refined diagram of coverings:
I1 → I1, I1 → I2 → · · · → In−1 → I1, and In−1 → In−2s .

We use this diagram and Lemma 4 to obtain a periodic orbit
of f of prime period m for every natural number m C n.
Namely, in the case m ≥ n − 1 we use a chain

In−1 → I1 → I1 → · · · → I1
︸ ︷︷ ︸

m−n+2 times

→ I2 → I3 → · · · → In−1.

In the case 1 < m < n − 1, the number m is even, m = 2s,
and we use a chain In−1 → In−2s → In−2s+1 → · · · → In−1.

Finally, in the case m = 1, we use the chain I1 → I1.



Lemma 7 2n B 2m if and only if n Bm for all n,m ∈ N.

Lemma 8 If x is a periodic point of the map f of prime
period n, then x is also a periodic point of f k of prime period
n/ gcd(n, k).

Lemma 9 Assume that for some n,m > 1, period n implies
period m. Then period 2n implies period 2m.

Proof: Suppose x is a periodic point of the map f of prime
period 2n. Then x is a periodic point of f 2 of prime period n.
By assumption, f 2 also has a periodic point y of prime period
m. Then f 2m(y ) = (f 2)m(y ) = y so that y is a periodic point
of f of prime period `, where ` divides 2m. By Lemma 8,
` = 2m if ` is even and ` = m if ` is odd. In the former case,
we are done. In the latter case, we apply Proposition 5 or 6.

Lemma 10 If f has a periodic point of even (prime) period,
then it also has a periodic point of prime period 2.



On the converse of Sharkovskii’s Theorem

Let n ∈ N. Consider an arbitrary permutation π of
{1, 2, . . . , n} that consists of a single cycle of
length n.

We can extend π to a continuous function
f : [1, n] → [1, n] so that f be linear on each of the

intervals [1, 2], [2, 3], . . . , [n − 1, n]. Further, we
can extend f to a continuous function f : R → R

so that f be constant on (−∞, 1] and on [n,∞).

Then all periodic points of f are in [1, n].

By construction, f has a periodic point of prime

period n. One can try to pick π so that there are
no periodic points of prime periods m B n.



Period 5 orbit, but no period 3 orbit

Example. n = 5, π = (1 3 4 2 5).

We obtain that f 3([1, 2]) = [2, 5], f 3([2, 3]) = [3, 5],
f 3([3, 4]) = [1, 5], f 3([4, 5]) = [1, 4]. Moreover, f 3 is strictly
decreasing on [3, 4]. Therefore f 3 has a unique fixed point,
which is also a fixed point of f .


