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Lecture 10:
Bifurcation theory.



Bifurcation theory

The object of bifurcation theory is to study changes that
maps undergo as parameters change.

In the context of one-dimensional dynamics, we consider a
one-parameter family of maps fλ : R → R. We assume that
G (x , λ) = fλ(x) is smooth a function of two variables.

Informally, the family {fλ} has a bifurcation at λ = λ0 if the
dynamics of fλ changes as λ passes λ0. One way to formalize
it is to require that there exist ε > 0 such that for any
ε1, ε2 ∈ (0, ε) the maps fλ0−ε1 and fλ0+ε2 are not topologically
conjugate. The simplest case is an isolated bifurcation point
λ0. In this case, the map fλ is structurally stable for all λ in a
punctured neighborhood of λ0 but not for λ = λ0.

The condition of topological conjugacy is often relaxed to
local topological conjugacy or to similar configuration of
periodic orbits.



Saddle-node bifurcation

Exponential map Eλ(x) = λex , λ ≈ 1/e, x ≈ 1.

For λ > 1/e, there are no fixed points. At λ = 1/e, there is
a non-hyperbolic fixed point 1. For 0 < λ < 1/e, there are
two fixed points, one is repelling and the other one is
attracting.
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Bifurcation diagram (saddle-node bifurcation)

In the plane with coordinates (λ, x), we plot fixed
points of Eλ for each λ:



Period doubling bifurcation

Exponential map Eλ(x) = λex , λ ≈ −e, x ≈ −1.

For −e < λ < 0, the fixed point is attracting. At λ = −e, it
is not hyperbolic. For λ < −e, the fixed point is repelling
and there is also an attracting periodic orbit of period 2.



Bifurcation diagram (period doubling bifurcation)

In the plane with coordinates (λ, x), we plot fixed

points of E 2

λ
for each λ:



Period doubling: logistic map

Logistic map Fµ(x) = µx(1− x), µ ≈ 3, x ≈ 2/3.

Consider graphs of F 2
µ for µ ≈ 3:

For µ < 3, the fixed point pµ = 1− µ−1 is attracting. At
µ = 3, it is not hyperbolic. For µ > 3, the fixed point pµ is
repelling and there is also an attracting periodic orbit of period
2.



No bifurcation: sufficient condition

Theorem 1 Let fλ be a one-parameter family of functions
and suppose that fλ0

(x0) = x0 and f ′λ0
(x0) 6= 1. Then there

are open intervals I 3 x0 and N 3 λ0 and a smooth function
p : N → I such that p(λ0) = x0 and fλ(p(λ)) = p(λ) for all
λ ∈ N. Moreover, p(λ) is the only fixed point of fλ in I .
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Theorem 1 Let fλ be a one-parameter family of functions
and suppose that fλ0

(x0) = x0 and f ′λ0
(x0) 6= 1. Then there
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Proof: Consider a function of two variables
G (x , λ) = fλ(x)− x . We have G (x0, λ0) = fλ0

(x0)− x0 = 0

and ∂G
∂x
(x0, λ0) = f ′λ0

(x0)− 1 6= 0. By the Implicit Function

Theorem, there are open intervals I 3 x0 and N 3 λ0 and a
smooth function p : N → I such that

G (x , λ) = 0 ⇐⇒ x = p(λ) for all (x , λ) ∈ I × N.



Saddle-node bifurcation: sufficient condition

Theorem 2 Let fλ be a one-parameter family of functions
and suppose that fλ0

(x0) = x0, f ′λ0
(x0) = 1, f ′′λ0

(x0) 6= 0, and
∂fλ
∂λ

∣

∣

λ=λ0
(x0) 6= 0. Then there are open intervals I 3 x0 and

N 3 λ0 and a smooth function p : I → N such that
p(x0) = λ0 and fp(x)(x) = x for all x ∈ I . Moreover,
p′(x0) = 0 and p′′(x0) 6= 0.



Period doubling bifurcation: sufficient condition

Theorem 3 Let fλ be a one-parameter family of functions
and suppose that fλ0

(x0) = x0, f ′λ0
(x0) = −1, and

∂(f 2
λ
)′

∂λ

∣

∣

∣

λ=λ0

(x0) 6= 0. Then there are open intervals I 3 x0

and N 3 λ0 and a smooth function p : I → N such that
p(x0) = λ0 and f 2p(x)(x) = x for all x ∈ I but fp(x)(x) 6= x

for x ∈ I \ {x0}.



More examples

• Quadratic maps: Qc(x) = x2 + c .
The family undergoes a saddle-node bifurcation at c = 1/4
and a period doubling bifurcation at c = −3/4. It undergoes
a lot of other bifurcations as well.

• Hyperbolic sine family: Hλ(x) = λ sinh x .
A map Hλ is not structurally stable within the family for
λ = −1, 0, and 1. At λ = −1, we have a period doubling
bifurcation. At λ = 1, the family transitions from one to
three fixed points. At λ = 0, the bifurcation does not change
the configuration of periodic points.

• Linear maps: fλ(x) = λ2x .
A map fλ is not structurally stable within the family for
λ = −1, 0, and 1. At λ = −1 and 1, the family transitions
from a repelling fixed point to an attracting one (or vice
versa). At λ = 0, there is no bifurcation.



Period-doubling route to chaos

The logistic map Fµ has the period doubling bifurcation when
the parameter µ passes 3. As µ increases beyond 3, the map
undergoes repeated period doublings, namely, the period
doubling bifurcation for F 2

µ , then for F 4
µ , then for F 8

µ , and so
on.



Period-doubling route to chaos

The logistic map Fµ has the period doubling bifurcation when
the parameter µ passes 3. As µ increases beyond 3, the map
undergoes repeated period doublings, namely, the period
doubling bifurcation for F 2

µ , then for F 4
µ , then for F 8

µ , and so
on.

However the period doubling regime ends before µ reaches 4
when the hard chaos develops. To get more information about
various kinds of bifurcations for the logistic map, we create the
orbit diagram as follows. For many equally spaced values of
µ, we compute the first 500 points of the orbit of 1/2, then
plot the last 400 of them on the (λ, x)-plane. It is known
that the map Fµ has at most one attracting periodic orbit and
that the orbit of 1/2 is always attracted to it.



Orbit diagram for the logistic map


