MATH 614
Dynamical Systems and Chaos

Lecture 12:
Maps of the circle (continued).
Subshifts of finite type (revisited).



Maps of the circle A

TSt st
T an orientation-preserving homeomorphism.



Rotation number

Suppose T : S' — S! is an orientation-preserving
homeomorphism.

For any x € S' let w(T,x) denote the length of the shortest
arc that goes from x to T(x) in the counterclockwise
direction.
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w(T, T(x)).

Consider the average A,(T,x) =

x
Il

Theorem The limit lim A,(T,x) exists for any x € S!
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and does not depend on x.
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The rotation number of T is p(T) = — lim A,(T,x).
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Properties of the rotation number

e Forany T, 0 <p(T) < 1.

e p(R,) =w/(27) (mod1), where R, is the
rotation by w.

e If g is an orientation-preserving homeomorphism
of S, then p(g~1Tg) = p(T).

e If g is an orientation-reversing homeomorphism
of S, then p(g~1Tg) = —p(T) (mod1).

e If T and T, are topologically conjugate, then
p(T1) = £p(T,) (mod 1).



Properties of the rotation number

e Rotations R,, and R,, are topologically
conjugate if and only if w; = 4w, (mod 27).

e p(T")=np(T) (mod1l).
e p(T)=0 ifand only if T has a fixed point.

e p(T) is rational if and only if T has a periodic
point.

e If T has a periodic point of prime period n, then
p(T) = k/n, a reduced fraction.



Theorem (Denjoy) If T is C? smooth and the
rotation number p(T) is irrational, then T is
topologically conjugate to a rotation of the circle.

Example (Denjoy). There exists C! smooth
diffeomorphism T of S! such that p(T) is irrational
but T is not minimal.



Proposition Suppose f : S! — S! is an
orientation-preserving homeomorphism. Let ¢ > 0.
Then there exists ¢ > 0 such that for any
homeomorphism g : S — S with

sup dist(f(x), g(x)) <9
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we have [p(f) — p(g)| < & (mod1).

Corollary Suppose f, is a one-parameter family of
orientation-preserving homeomorphisms of St. If £,
depends continuously on A then p(fy) is a
continuous (mod 1) function of A.



The standard family

The standard (or canonical) family of maps
f,. :S' =S weR, £>0.
In the angular coordinate a:

foe(a) =a+w+esina.

If e =0 then f,. = R, is a rotation.

For 0 <e <1, f,. is a diffeomorphism.

If ¢ =1 then f, . is only a homeomorphism.
If € > 1 then f,. is not one-to-one.



The rotation number p(f, .):
e depends continuously (mod1) on w and ¢;

e is a 2w-periodic function of w for any ¢;

fo has rotation number 0;

p(f,.) is a non-decreasing function of
w € (0,2m) for any fixed ¢;
o lim p(f,.)=1.
w—21
Hence the map r.: [0,1) — [0,1) given by
X +— p(fazx ) is continuous, non-decreasing, and
onto.

ro is the identity.



Proposition Suppose p(f.,,-) is rational. If ¢ >0
then

p(fw,g) = p(fwo,s)
for all w > wy close enough to wy or for all w < wy
close enough to wy (or both).

Theorem For any irrational number 0 < pg <1
and any 0 < € < 1, there is exactly one
w € (0,2m) such that p(f,.) = po.



Let 0<e<1land 0<pyg<1 Then r(po) isa
point if pg is irrational and r=1(pp) is a nontrivial
interval if pg is rational.

r- is a Cantor function, which means that on the
complement of a Cantor set, r/ = 0.

The graph of a Cantor function is called the
“devil’s staircase’.



Cantor function
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The bifurcation diagram for the standard family
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The bifurcation diagram for the standard family

We plot the regions in the (&, w)-plane where
p(f,.¢) is a fixed rational number. Each region is a
“tongue” that flares from a point ¢ =0, w = m/n,
m, n € Z. None of these tongues can overlap when
e < 1.

Consider the tongue corresponding to p = 0.
It describes fixed points of the standard maps.
This tongue is the angle |w| <e.

What happens when we fix € and vary w?



If w= —¢ then f,.(a) =a+w+ecsina hasa
unique fixed point /2. As we increase w, it splits
into two fixed points, one in (—7/2,7/2), the
other in (7/2,37/2). They run around the circle in
opposite directions. Finally, at w = ¢ the two
points coalesce into a single fixed point —m /2.

The unique fixed points for w = +¢ are neutral.
As for two fixed points for |w| < €, one is
attracting while the other is repelling (which one?).

So the family f,. (e fixed) enjoys a saddle-node
bifurcation two times. Notice that these are not
pure saddle-node bifurcations since the bifurcation
points are not isolated (they are “half-isolated”).



Structurally stable maps of the circle



Definition. An orientation-preserving diffeomorphism
f: Sl — S! is Morse-Smale if it has rational rotation
number and all of its periodic points are hyperbolic.

If p(f) = m/n, a reduced fraction, then all periodic points of
f have period n. Hence the only periodic points of " are
fixed points, alternately sinks and sources around the circle.

Theorem A Morse-Smale diffeomorphism of the circle is
Cl-structurally stable.

Theorem (The Closing Lemma) Suppose f is a
Cr-diffeomorphism of S* with an irrational rotation number.
Then for any € > 0 there exists a diffeomorphism

g : S — S with a rational rotation number such that f and
g are C’-¢ close.

Theorem (Kupka-Smale) For any orientation-preserving
diffeomorphism f of S and any € > 0 there exists a
Morse-Smale diffeomorphism that is Cl-¢ close to f.



Subshift

Given a finite set A (an alphabet), we denote by ¥ 4 the set of
all infinite words over A, i.e., infinite sequences s = (515, ...),
s; € A. The shift transformation ¢ : ¥ 4 — X 4 is defined by

0(505152 .. ) = (5152 .. )

Suppose ¥’ is a closed subset of the space X 4 invariant under
the shift o, i.e., o(¥’) C ¥'. The restriction of the shift o to
the set Y’ is called a subshift.

Suppose W is a collection of finite words in the alphabet A.
Let ¥’ be the set of all s € ¥ 4 that do not contain any
element of W as a subword. Then ¥’ is a closed,
shift-invariant set. Any subshift can be defined this way.

In the case the set W of “forbidden” words is finite, the
subshift is called a subshift of finite type. If, additionally,
all forbidden words are of length 2, then the subshift is called a
topological Markov chain.



Subshifts of finite type

Theorem Any subshift of finite type is topologically
conjugate to a topological Markov chain.

Example. A= {0,1}, W ={00,111}.

A topological Markov chain can be defined by a directed graph
with the vertex set A where edges correspond to allowed
words of length 2.

To any topological Markov chain we associate a matrix

M = (m;) whose rows and columns are indexed by .4 and
m; =1 or 0 if the word ij is allowed (resp., forbidden). The
matrix is actually the incidence matrix of the above graph.

Theorem The topological Markov chain is chaotic if for some
n > 1 all entries of the matrix M" are positive.






