
MATH 614

Dynamical Systems and Chaos

Lecture 12:

Maps of the circle (continued).
Subshifts of finite type (revisited).



Maps of the circle

T : S1 → S1,
T an orientation-preserving homeomorphism.



Rotation number

Suppose T : S1 → S1 is an orientation-preserving
homeomorphism.

For any x ∈ S1 let ω(T , x) denote the length of the shortest
arc that goes from x to T (x) in the counterclockwise
direction.

Consider the average An(T , x) =
1

n

n−1∑

k=0

ω(T ,T k(x)).

Theorem The limit lim
n→∞

An(T , x) exists for any x ∈ S1

and does not depend on x .

The rotation number of T is ρ(T ) =
1

2π
lim
n→∞

An(T , x).





Properties of the rotation number

• For any T , 0 ≤ ρ(T ) < 1.

• ρ(Rω) = ω/(2π) (mod 1), where Rω is the

rotation by ω.

• If g is an orientation-preserving homeomorphism
of S1, then ρ(g−1Tg) = ρ(T ).

• If g is an orientation-reversing homeomorphism
of S1, then ρ(g−1Tg) = −ρ(T ) (mod 1).

• If T1 and T2 are topologically conjugate, then

ρ(T1) = ±ρ(T2) (mod 1).



Properties of the rotation number

• Rotations Rω1
and Rω1

are topologically
conjugate if and only if ω1 = ±ω2 (mod 2π).

• ρ(T n) = nρ(T ) (mod 1).

• ρ(T ) = 0 if and only if T has a fixed point.

• ρ(T ) is rational if and only if T has a periodic
point.

• If T has a periodic point of prime period n, then
ρ(T ) = k/n, a reduced fraction.



Theorem (Denjoy) If T is C 2 smooth and the

rotation number ρ(T ) is irrational, then T is
topologically conjugate to a rotation of the circle.

Example (Denjoy). There exists C 1 smooth
diffeomorphism T of S1 such that ρ(T ) is irrational

but T is not minimal.



Proposition Suppose f : S1 → S1 is an
orientation-preserving homeomorphism. Let ε > 0.

Then there exists δ > 0 such that for any
homeomorphism g : S1 → S1 with

sup
x∈S1

dist(f (x), g(x)) < δ

we have |ρ(f )− ρ(g)| < ε (mod 1).

Corollary Suppose fλ is a one-parameter family of

orientation-preserving homeomorphisms of S1. If fλ
depends continuously on λ then ρ(fλ) is a

continuous (mod 1) function of λ.



The standard family

The standard (or canonical) family of maps

fω,ε : S
1 → S1, ω ∈ R, ε ≥ 0.

In the angular coordinate α:

fω,ε(α) = α + ω + ε sinα.

If ε = 0 then fω,ε = Rω is a rotation.
For 0 ≤ ε < 1, fω,ε is a diffeomorphism.

If ε = 1 then fω,ε is only a homeomorphism.
If ε > 1 then fω,ε is not one-to-one.



The rotation number ρ(fω,ε):

• depends continuously (mod 1) on ω and ε;

• is a 2π-periodic function of ω for any ε;

• f0,ε has rotation number 0;

• ρ(fω,ε) is a non-decreasing function of

ω ∈ (0, 2π) for any fixed ε;

• lim
ω→2π

ρ(fω,ε) = 1.

Hence the map rε : [0, 1) → [0, 1) given by
x 7→ ρ(f2πx ,ε) is continuous, non-decreasing, and

onto.

r0 is the identity.



Proposition Suppose ρ(fω0,ε) is rational. If ε > 0
then

ρ(fω,ε) = ρ(fω0,ε)

for all ω > ω0 close enough to ω0 or for all ω < ω0

close enough to ω0 (or both).

Theorem For any irrational number 0 < ρ0 < 1

and any 0 < ε < 1, there is exactly one
ω ∈ (0, 2π) such that ρ(fω,ε) = ρ0.



Let 0 < ε < 1 and 0 ≤ ρ0 < 1. Then r−1

ε (ρ0) is a
point if ρ0 is irrational and r−1

ε (ρ0) is a nontrivial

interval if ρ0 is rational.

rε is a Cantor function, which means that on the
complement of a Cantor set, r ′ε = 0.

The graph of a Cantor function is called the

“devil’s staircase”.



Cantor function



The bifurcation diagram for the standard family



The bifurcation diagram for the standard family

We plot the regions in the (ε, ω)-plane where
ρ(fω,ε) is a fixed rational number. Each region is a

“tongue” that flares from a point ε = 0, ω = m/n,
m, n ∈ Z. None of these tongues can overlap when

ε < 1.

Consider the tongue corresponding to ρ = 0.
It describes fixed points of the standard maps.

This tongue is the angle |ω| ≤ ε.

What happens when we fix ε and vary ω?



If ω = −ε then fω,ε(α) = α + ω + ε sinα has a

unique fixed point π/2. As we increase ω, it splits
into two fixed points, one in (−π/2, π/2), the
other in (π/2, 3π/2). They run around the circle in

opposite directions. Finally, at ω = ε the two
points coalesce into a single fixed point −π/2.

The unique fixed points for ω = ±ε are neutral.
As for two fixed points for |ω| < ε, one is

attracting while the other is repelling (which one?).

So the family fω,ε (ε fixed) enjoys a saddle-node
bifurcation two times. Notice that these are not

pure saddle-node bifurcations since the bifurcation
points are not isolated (they are “half-isolated”).



Structurally stable maps of the circle



Definition. An orientation-preserving diffeomorphism
f : S1 → S1 is Morse-Smale if it has rational rotation
number and all of its periodic points are hyperbolic.

If ρ(f ) = m/n, a reduced fraction, then all periodic points of
f have period n. Hence the only periodic points of f n are
fixed points, alternately sinks and sources around the circle.

Theorem A Morse-Smale diffeomorphism of the circle is
C 1-structurally stable.

Theorem (The Closing Lemma) Suppose f is a
C r -diffeomorphism of S1 with an irrational rotation number.
Then for any ε > 0 there exists a diffeomorphism
g : S1 → S1 with a rational rotation number such that f and
g are C r -ε close.

Theorem (Kupka-Smale) For any orientation-preserving
diffeomorphism f of S1 and any ε > 0 there exists a
Morse-Smale diffeomorphism that is C 1-ε close to f .



Subshift
Given a finite set A (an alphabet), we denote by ΣA the set of
all infinite words over A, i.e., infinite sequences s = (s1s2 . . . ),
si ∈ A. The shift transformation σ : ΣA → ΣA is defined by
σ(s0s1s2 . . . ) = (s1s2 . . . ).

Suppose Σ′ is a closed subset of the space ΣA invariant under
the shift σ, i.e., σ(Σ′) ⊂ Σ′. The restriction of the shift σ to
the set Σ′ is called a subshift.

Suppose W is a collection of finite words in the alphabet A.
Let Σ′ be the set of all s ∈ ΣA that do not contain any
element of W as a subword. Then Σ′ is a closed,
shift-invariant set. Any subshift can be defined this way.

In the case the set W of “forbidden” words is finite, the
subshift is called a subshift of finite type. If, additionally,
all forbidden words are of length 2, then the subshift is called a
topological Markov chain.



Subshifts of finite type

Theorem Any subshift of finite type is topologically
conjugate to a topological Markov chain.

Example. A = {0, 1}, W = {00, 111}.

A topological Markov chain can be defined by a directed graph
with the vertex set A where edges correspond to allowed
words of length 2.

To any topological Markov chain we associate a matrix
M = (mij) whose rows and columns are indexed by A and
mij = 1 or 0 if the word ij is allowed (resp., forbidden). The
matrix is actually the incidence matrix of the above graph.

Theorem The topological Markov chain is chaotic if for some
n ≥ 1 all entries of the matrix Mn are positive.




