MATH 614 Dynamical Systems and Chaos Lecture 13: Dynamics of linear maps. Hyperbolic toral automorphisms.

Any linear mapping $L : \mathbb{R}^n \to \mathbb{R}^n$ is represented as multiplication of an *n*-dimensional column vector by a $n \times n$ matrix: $L(\mathbf{x}) = A\mathbf{x}$, where $A = (a_{ij})_{1 \le i,j \le n}$.

Dynamics of linear transformations corresponding to particular matrices is determined by eigenvalues and the Jordan canonical form.

 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Reflection about the vertical axis

 $A = \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}$

Horizontal shear

 $A = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Identity

$$L_3(\mathbf{x}) = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix} \mathbf{x} \qquad L_4(\mathbf{x}) = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix} \mathbf{x}$$

$$L_5(\mathbf{x}) = egin{pmatrix} 0 & -1/2 & 0 \ 1/2 & 0 & 0 \ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$$

Stable and unstable subspaces

Proposition 1 Suppose that all eigenvalues of a linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ are less than 1 in absolute value. Then $L^n(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$ for all $\mathbf{x} \in \mathbb{R}^n$.

Proposition 2 Suppose that all eigenvalues of a linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ are greater than 1 in absolute value. Then $L^{-n}(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$ for all $\mathbf{x} \in \mathbb{R}^n$.

Given a linear map $L: \mathbb{R}^n \to \mathbb{R}^n$, let W^s denote the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $L^n(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$. In the case L is invertible, let W^u denote the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $L^{-n}(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$.

Proposition 3 W^s and W^u are vector subspaces of \mathbb{R}^n that are transversal: $W^s \cap W^u = \{\mathbf{0}\}.$

Definition. W^s is called the **stable subspace** of the linear map L. W^u is called the **unstable subspace** of L.

Hyperbolic linear maps

Definition. A linear map L is called **hyperbolic** if it is invertible and all eigenvalues of L are different from 1 in absolute value.

Proposition Suppose $L : \mathbb{R}^n \to \mathbb{R}^n$ is a hyperbolic linear map. Then

•
$$W^s \oplus W^u = \mathbb{R}^n$$
;

• if $\mathbf{x} \notin W^s \cup W^u$, then $L^n(\mathbf{x}) \to \infty$ as $n \to \pm \infty$.

Torus

The two-dimensional **torus** is a closed surface obtained by gluing together opposite sides of a square by translation.

Torus

The **two-dimensional torus** is a closed surface obtained by gluing together opposite sides of a square by translation.

Alternatively, the torus is defined as $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, the quotient of the plane \mathbb{R}^2 by the integer lattice \mathbb{Z}^2 . To be precise, we introduce a relation on \mathbb{R}^2 : $\mathbf{x} \sim \mathbf{y}$ if $\mathbf{y} - \mathbf{x} \in \mathbb{Z}^2$. This is an equivalence relation and \mathbb{T}^2 is the set of equivalence classes. The plane \mathbb{R}^2 induces a distance function, a topology, and a smooth structure on the torus \mathbb{T}^2 . Also, the addition is well defined on \mathbb{T}^2 . We denote the equivalence class of a point $(x, y) \in \mathbb{R}^2$ by [x, y].

Topologically, the torus \mathbb{T}^2 is the Cartesian product of two circles: $\mathbb{T}^2=S^1\times S^1.$

Similarly, the *n*-dimensional torus is defined as $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$. Topologically, it is the Cartesian product of *n* circles: $\mathbb{T}^n = S^1 \times \cdots \times S^1$.

Transformations of the torus

Let $\pi : \mathbb{R}^n \to \mathbb{T}^n$ be the natural projection, $\pi(x_1, \ldots, x_n) = [x_1, \ldots, x_n]$. Suppose $F : \mathbb{R}^n \to \mathbb{R}^n$ is a transformation such that $\mathbf{x} \sim \mathbf{y} \implies F(\mathbf{x}) \sim F(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then it gives rise to a unique transformation $f : \mathbb{T}^n \to \mathbb{T}^n$ satisfying $f \circ \pi = \pi \circ F$:

The map f is continuous (resp., smooth) if so is F.

Examples. • Translation (or rotation). $F(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ is a constant vector.

• Toral endomorphism. $F(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix with integer entries.

Hyperbolic toral automorphisms

Suppose A is an $n \times n$ matrix with integer entries. Let L_A denote a toral endomorphism induced by the linear map $L(\mathbf{x}) = A\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n$. The map L_A is a **toral automorphism** if it is invertible.

Proposition The following conditions are equivalent:

- L_A is a toral automorphism,
- A is invertible and A^{-1} has integer entries,
- det $A = \pm 1$.

Definition. A toral automorphism L_A is **hyperbolic** if the matrix A has no eigenvalues of absolute value 1.

Theorem Every hyperbolic toral automorphism is chaotic.

Cat map

Example.
$$L_A$$
, where $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Stable and unstable subspaces project to dense curves on the torus.