MATH 614

Dynamical Systems and Chaos

Linear transformations

Any linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is represented as multiplication of an n-dimensional column vector by a $n \times n$ matrix: $L(\mathbf{x})=A \mathbf{x}$, where $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$.

Dynamics of linear transformations corresponding to particular matrices is determined by eigenvalues and the Jordan canonical form.

$$
A=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Rotation by 90°

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Rotation by 45°

$$
A=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Reflection about the vertical axis

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Reflection about the line $x-y=0$

$$
A=\left(\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right)
$$

Horizontal shear

$$
A=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Scaling

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right)
$$

Squeeze

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Vertical projection on the horizontal axis

$$
A=\left(\begin{array}{rr}
0 & -1 \\
0 & 1
\end{array}\right)
$$

Horizontal projection on the line $x+y=0$

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Identity

Phase portraits of linear maps

$$
L_{1}(\mathbf{x})=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \mathbf{x} \quad L_{2}(\mathbf{x})=\left(\begin{array}{cc}
2 & 0 \\
0 & -1 / 2
\end{array}\right) \mathbf{x}
$$

Phase portraits of linear maps

$$
L_{3}(\mathbf{x})=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 3
\end{array}\right) \mathbf{x} \quad L_{4}(\mathbf{x})=\left(\begin{array}{cc}
0 & -1 / 2 \\
1 / 2 & 0
\end{array}\right) \mathbf{x}
$$

Phase portraits of linear maps

$$
L_{5}(x)=\left(\begin{array}{ccc}
0 & -1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) x
$$

Phase portraits of linear maps

$$
L(\mathbf{x})=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \mathbf{x}
$$

Stable and unstable subspaces

Proposition 1 Suppose that all eigenvalues of a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are less than 1 in absolute value. Then $L^{n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Proposition 2 Suppose that all eigenvalues of a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are greater than 1 in absolute value. Then $L^{-n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Given a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, let W^{s} denote the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $L^{n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$. In the case L is invertible, let W^{u} denote the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $L^{-n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$.

Proposition $3 W^{s}$ and W^{u} are vector subspaces of \mathbb{R}^{n} that are transversal: $W^{s} \cap W^{U}=\{\mathbf{0}\}$.

Definition. W^{s} is called the stable subspace of the linear map $L . W^{u}$ is called the unstable subspace of L.

Hyperbolic linear maps

Definition. A linear map L is called hyperbolic if it is invertible and all eigenvalues of L are different from 1 in absolute value.

Proposition Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a hyperbolic linear map. Then

- $W^{s} \oplus W^{u}=\mathbb{R}^{n}$;
- if $\mathbf{x} \notin W^{s} \cup W^{u}$, then $L^{n}(\mathbf{x}) \rightarrow \infty$ as $n \rightarrow \pm \infty$.

Torus

The two-dimensional torus is a closed surface obtained by gluing together opposite sides of a square by translation.

Torus

The two-dimensional torus is a closed surface obtained by gluing together opposite sides of a square by translation.
Alternatively, the torus is defined as $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$, the quotient of the plane \mathbb{R}^{2} by the integer lattice \mathbb{Z}^{2}. To be precise, we introduce a relation on $\mathbb{R}^{2}: \mathbf{x} \sim \mathbf{y}$ if $\mathbf{y}-\mathbf{x} \in \mathbb{Z}^{2}$. This is an equivalence relation and \mathbb{T}^{2} is the set of equivalence classes. The plane \mathbb{R}^{2} induces a distance function, a topology, and a smooth structure on the torus \mathbb{T}^{2}. Also, the addition is well defined on \mathbb{T}^{2}. We denote the equivalence class of a point $(x, y) \in \mathbb{R}^{2}$ by $[x, y]$.
Topologically, the torus \mathbb{T}^{2} is the Cartesian product of two circles: $\mathbb{T}^{2}=S^{1} \times S^{1}$.

Similarly, the n-dimensional torus is defined as $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$. Topologically, it is the Cartesian product of n circles: $\mathbb{T}^{n}=S^{1} \times \cdots \times S^{1}$.

Transformations of the torus

Let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ be the natural projection, $\pi\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{n}\right]$. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a transformation such that $\mathbf{x} \sim \mathbf{y} \Longrightarrow F(\mathbf{x}) \sim F(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then it gives rise to a unique transformation $f: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ satisfying $f \circ \pi=\pi \circ F$:

The map f is continuous (resp., smooth) if so is F.
Examples. - Translation (or rotation). $F(\mathbf{x})=\mathbf{x}+\mathbf{x}_{0}$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ is a constant vector.

- Toral endomorphism.
$F(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix with integer entries.

Example. $F(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Hyperbolic toral automorphisms

Suppose A is an $n \times n$ matrix with integer entries. Let L_{A} denote a toral endomorphism induced by the linear map $L(\mathbf{x})=A \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}$. The map L_{A} is a toral automorphism if it is invertible.

Proposition The following conditions are equivalent:

- L_{A} is a toral automorphism,
- A is invertible and A^{-1} has integer entries,
- $\operatorname{det} A= \pm 1$.

Definition. A toral automorphism L_{A} is hyperbolic if the matrix A has no eigenvalues of absolute value 1 .

Theorem Every hyperbolic toral automorphism is chaotic.

Cat map

Example. L_{A}, where $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.

Stable and unstable subspaces project to dense curves on the torus.

