Dynamical Systems and Chaos

MATH 614

Lecture 19: Holomorphic dynamics.

Classification of periodic points.

Complex numbers

 \mathbb{C} : complex numbers.

Complex number:
$$\boxed{z=x+iy},$$
 where $x,y\in\mathbb{R}$ and $i^2=-1.$

$$i = \sqrt{-1}$$
: imaginary unit

Alternative notation: z = x + yi.

$$x = \text{real part of } z$$
,
 $iy = \text{imaginary part of } z$

$$y = 0 \implies z = x$$
 (real number)
 $x = 0 \implies z = iy$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

If
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$, then
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2),$$

Given z = x + iy, the **complex conjugate** of z is $|z| = \sqrt{x^2 + y^2}$

 $z_1z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).$

$$\bar{z} = x - iy$$
. The **modulus** of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$.

$$z^{-1} = \frac{\bar{z}}{|z|^2}, \qquad (x+iy)^{-1} = \frac{x-iy}{x^2+y^2}.$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \cdots + \frac{z^{n}}{n!} + \cdots$$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,... converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i \sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \cdots + \frac{(i\phi)^n}{n!} + \cdots$$

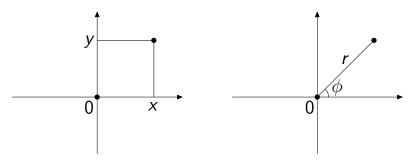
The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $\underbrace{1, i, -1, -i}_{j, \dots, j, \dots, j, \dots}$.

$$e^{i\phi} = 1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} - \dots + (-1)^k \frac{\phi^{2k}}{(2k)!} + \dots + i\left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots + (-1)^k \frac{\phi^{2k+1}}{(2k+1)!} + \dots\right)$$

$$= \cos\phi + i\sin\phi.$$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.



$$x = r \cos \phi, \ y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$$

If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}, \ z_1/z_2 = (r_1/r_2)e^{i(\phi_1 - \phi_2)}.$

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \ldots, z_n such that

$$p(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n).$$

Holomorphic functions

Suppose $D \subset \mathbb{C}$ is a domain and consider a function $f: D \to \mathbb{C}$. The function f is called **complex differentiable** at a point $z_0 \in D$ if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \text{ exists.}$$

The limit value is the **derivative** $f'(z_0)$.

The function f is called **holomorphic at** a point $z_0 \in D$ if it is complex differentiable in a neighborhood of z_0 . f is **holomorphic on** D if it is holomorphic at every point of D.

To each complex function $f: D \to \mathbb{C}$ we associate a real vector-valued function $(u, v): D \to \mathbb{R}^2$ defined by f(x + iy) = u(x, y) + iv(x, y).

Theorem The function f is holomorphic if and only if u, v have continuous partial derivatives $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ and, moreover, the Cauchy-Riemann equations are satisfied:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial v} = -\frac{\partial v}{\partial x}.$$

Analytic functions

The function $f: D \to \mathbb{C}$ is called **analytic at** a point $z_0 \in D$ if it can be expanded into a convergent power series

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

in a neighborhood of z_0 . f is **analytic on** D if it is analytic at every point of D.

Examples.

- ullet Any complex polynomial is an analytic function on $\mathbb C.$
- Any rational function R(z) = P(z)/Q(z), where P, Q are polynomials, is analytic on its domain.
- ullet The exponential function is analytic on $\mathbb C.$

Theorem A function $f: D \to \mathbb{C}$ is analytic on D if and only if it is holomorphic on D. If f is analytic then it coincides with its Taylor series

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

on any open disk $B(z_0, r) = \{z \in \mathbb{C} : |z - z_0| < r\}$ that is contained within D.

Complex linear functions

 $L_{\alpha}: \mathbb{C} \to \mathbb{C}, \ \alpha \in \mathbb{C}.$

 $L_{\alpha}(z) = \alpha z$ for all $z \in \mathbb{C}$.

If $\alpha = 1$ then L_{α} is the identity map. Otherwise 0 is the only fixed point.

Dynamics of L_{α} depends on α .

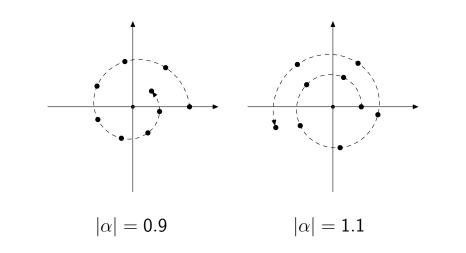
 $L_{\alpha}^{n}(z) = \alpha^{n}z$ for n = 1, 2, ...

Let $\alpha = \rho e^{i\theta}$, $z = re^{i\phi}$. Then

$$L_{\alpha}^{n}(z) = \rho^{n} r e^{i(n\theta + \phi)}.$$

If $|\alpha| < 1$ then $\lim_{n \to \infty} L_{\alpha}^{n}(z) = 0$ for all $z \in \mathbb{C}$.

If $|\alpha| > 1$ then $\lim_{n \to \infty} L_{\alpha}^{n}(z) = \infty$ for all $z \neq 0$.



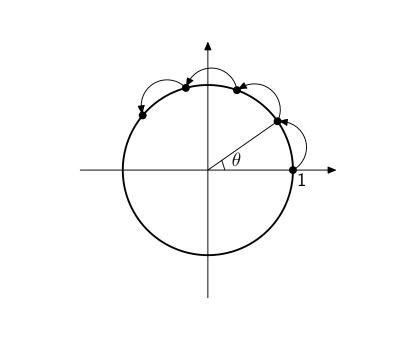
Rotations of the plane

If $|\alpha| = 1$ then L_{α} is the rotation of the complex plane by angle θ , the argument of α ($\alpha = e^{i\theta}$).

Each circle $\{z \in \mathbb{C} : |z| = r\}$, r > 0 is invariant under L_{α} . The restriction of L_{α} is a rotation of the circle.

In polar coordinates (r, ϕ) ,

$$(r,\phi)\mapsto (r,\phi+\theta).$$



The argument of α , $|\alpha| = 1$ is a rational multiple of π if and only if α is a root of unity: $\alpha^k = 1$ for some integer k > 0.

If α is a root of unity $\sqrt[k]{1}$, then L_{α}^{k} is the identity. Hence all orbits are periodic.

If α is not a root of unity then

(i) each orbit is dense in a circle centered at the origin (Jacobi's Theorem);(ii) each orbit is uniformly distributed with respect to the length measure on the circle (the Kronecker-Weyl Theorem).

Complex affine functions

$$L_{\alpha,\beta}: \mathbb{C} \to \mathbb{C}, \ \alpha, \beta \in \mathbb{C}.$$

 $L_{\alpha,\beta}(z) = \alpha z + \beta \text{ for all } z \in \mathbb{C}.$

 $L_{1,\beta}$ is the translation of the complex plane by β .

 $L_{1,\beta}^n(z) = z + n\beta$ for $n = 1, 2, \dots$

Each orbit tends to infinity (unless $\beta \neq 0$).

If $\alpha \neq 1$ then $L_{\alpha,\beta}$ is conjugate to L_{α} .

The equation $L_{\alpha,\beta}(z)=z$ has a unique solution $z_0=\beta(1-\alpha)^{-1}$. Then $L_{\alpha,\beta}(z)-z_0=L_{\alpha}(z-z_0)$ for all $z\in\mathbb{C}$.

Hence $L_{\alpha,\beta} = L_{1,z_0} L_{\alpha} L_{1,z_0}^{-1}$.

Squaring function

$$Q_0:\mathbb{C}\to\mathbb{C},\ \ Q_0(z)=z^2.$$

Let $z = re^{i\phi}$. Then $Q_0(z) = r^2 e^{2i\phi}$.

$$Q_0^n(z)=z^{2^n}=r^{2^n}e^{i(2^n\phi)}.$$

If r=|z|<1 then $Q_0^n(z)\to 0$ as $n\to \infty$. If |z|>1 then $Q_0^n(z)\to \infty$ as $n\to \infty$.

The unit circle |z|=1 is invariant under Q_0 and the restriction of Q_0 is conjugate to the doubling map.

In polar coordinates (r, ϕ) ,

$$(r,\phi)\mapsto (r^2,2\phi).$$

Theorem The squaring map Q_0 is chaotic on the unit circle, that is,

- it is topologically transitive,
- periodic points are dense,
- it has sensitive dependence on initial conditions.

Proposition For any $z \in \mathbb{C}$, |z| = 1 and any neighborhood W of z we have

$$\bigcup_{n=0}^{\infty} Q_0^n(W) = \mathbb{C} \setminus \{0\}.$$

Proof: Any neighborhood of a point on the unit circle contains a small chunk of a wedge of the form

$$V = \{ re^{i\phi} \mid r_1 < r < r_2, \ \phi_1 < \phi < \phi_2 \},$$

where $r_1 < 1 < r_2$. Now

$$Q_0^n(V) = \{ re^{i\phi} \mid r_1^{2^n} < r < r_2^{2^n}, \ 2^n\phi_1 < \phi < 2^n\phi_2 \}$$

for n = 1, 2, ... If $2^n(\phi_2 - \phi_1) > 2\pi$ then

$$Q_0^n(V) = \{z \in \mathbb{C} : r_1^{2^n} < |z| < r_2^{2^n}\}.$$

Since $r_1 < 1 < r_2$, it follows that

$$\bigcup_{n=0}^{\infty} Q_0^n(V) = \mathbb{C} \setminus \{0\}.$$

Fixed points

Let $U \subset \mathbb{C}$ be a domain and $F: U \to \mathbb{C}$ be a holomorphic function.

Suppose that $F(z_0) = z_0$ for some $z_0 \in U$.

The fixed point z_0 is called

- attracting if $|F'(z_0)| < 1$;
- repelling if $|F'(z_0)| > 1$;
- neutral if $|F'(z_0)| = 1$.

Example. $L'_{\alpha}(0) = \alpha$.

Theorem 1 Suppose z_0 is an attracting fixed point for a holomorphic function F. Then there exist $\delta>0$ and $0<\mu<1$ such that

$$|F(z)-z_0|\leq \mu|z-z_0|$$

for any $z \in D = \{z \in \mathbb{C} : |z - z_0| < \delta\}$.

In particular, $\lim_{z \to a} F^n(z) = z_0$ for all $z \in D$.

Hint. Take $|F'(z_0)| < \mu < 1$.

Theorem 2 Suppose z_0 is a repelling fixed point for a holomorphic function F. Then there exist $\delta > 0$ and M > 1 such that

$$|F(z)-z_0|\geq M|z-z_0|$$

for all
$$z \in D = \{z \in \mathbb{C} : |z - z_0| < \delta\}.$$

In particular, for any $z \in D \setminus \{z_0\}$ there is an integer n > 0 such that $F^n(z) \notin D$.

Hint. Take
$$1 < M < |F'(z_0)|$$
.

Periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \to U$ be a holomorphic function. Suppose that $F^n(z_0) = z_0$ for some $z_0 \in U$ and an integer n > 0.

The periodic orbit

$$z_0, F(z_0), F^2(z_0), \dots, F^{n-1}(z_0), F^n(z_0) = z_0, \dots$$
 is called

- attracting if $|(F^n)'(z_0)| < 1$;
- repelling if $|(F^n)'(z_0)| > 1$;
- neutral if $|(F^n)'(z_0)| = 1$.

$$(F^n)'(z_0) = \prod_{k=0}^{n-1} F'(F^k(z_0)).$$

Example. $Q_0: \mathbb{C} \to \mathbb{C}, \ Q_0(z) = z^2.$

The squaring function has 2 fixed points: 0 and 1.

0 is super attracting: $Q_0'(0) = 0$.

1 is repelling: $Q'_0(1) = 2$.

All nonzero periodic points of Q_0 are located on the unit circle. They are all repelling since $|Q_0'(z)|=2$ for any z, |z|=1.

(Since Q_0 is chaotic on the unit circle, it follows that no periodic point there can be attracting.)