MATH 614

Dynamical Systems and Chaos

Lecture 20:

Möbius transformations.
Local holomorphic dynamics at fixed points.

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \rightarrow \mathbb{C}$ be a holomorphic function. Suppose that $F\left(z_{0}\right)=z_{0}$ for some $z_{0} \in U$. The fixed point z_{0} is called

- attracting if $\left|F^{\prime}\left(z_{0}\right)\right|<1$;
- repelling if $\left|F^{\prime}\left(z_{0}\right)\right|>1$;
- neutral if $\left|F^{\prime}\left(z_{0}\right)\right|=1$.

Now suppose that $F^{n}\left(z_{1}\right)=z_{1}$ for some $z_{1} \in U$ and an integer $n \geq 1$. The periodic point z_{1} is called

- attracting if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|<1$;
- repelling if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|>1$;
- neutral if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|=1$.

The multiplier $\left(F^{n}\right)^{\prime}\left(z_{1}\right)$ is the same for all points in the orbit of z_{1}. In particular, all these points are of the same type as z_{1}. Note that the multiplier is preserved under any holomorphic change of coordinates.

Stereographic projection

Suppose Σ is a sphere in \mathbb{R}^{3} and Π is the tangent plane at some point $P_{s} \in \Sigma$. Let P_{n} be the point of Σ opposite to P_{s}. Then any straight line through P_{n} not parallel to Π intersects the plane Π and also intersects the sphere Σ at a point different from P_{n}.

This gives rise to a map $S: \Sigma \backslash\left\{P_{n}\right\} \rightarrow \Pi$, which is a homeomorphism. The map S is referred to as the stereographic projection. Note that S maps any circle on Σ onto a circle or a straight line in the plane Π.

The Riemann sphere

Introducing Cartesian coordinates on the plane Π with the origin at P_{s}, we can identify Π with the complex plane \mathbb{C}. The extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ is \mathbb{C} with one extra point "at infinity". We extend the stereographic projection S to a map $S: \Sigma \rightarrow \overline{\mathbb{C}}$ by letting $S\left(P_{n}\right)=\infty$. The topology on $\overline{\mathbb{C}}$ is defined so that S be a homeomorphism.
A holomorphic structure on \mathbb{C} is extended to $\overline{\mathbb{C}}$ by requiring that the map $H: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ defined by $H(z)=1 / z$ for $z \in \mathbb{C} \backslash\{0\}, H(0)=\infty$, and $H(\infty)=0$ be holomorphic.

Möbius transformations

Definition. A Möbius transformation is a rational map of the form $T(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$, where $\alpha, \beta, \gamma, \delta \in \mathbb{C}, \alpha \delta-\beta \gamma \neq 0$, regarded as a transformation of the Riemann sphere $\overline{\mathbb{C}}$.

Properties of the Möbius transformations:

- The Möbius transformations form a transformation group.
- Any Möbius transformation is a homeomorphism of $\overline{\mathbb{C}}$.
- Any Möbius transformation is holomorphic.
- Complex affine functions $T(z)=\alpha z+\beta, \alpha \neq 0$ are

Möbius transformations that fix ∞.

- Complex linear functions $T(z)=\alpha z, \alpha \neq 0$ are Möbius transformations that fix 0 and ∞.
- The group of Möbius transformations is generated by linear functions $z \mapsto \alpha z$, translations $z \mapsto z+\beta$, and the map $z \mapsto 1 / z$.

More properties of Möbius transformations

- Any Möbius transformation maps circles on the Riemann sphere (which are circles or straight lines in \mathbb{C}) onto other circles.
- For any triples z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} of distinct points on $\overline{\mathbb{C}}$ there exists a unique Möbius transformation T such that $T\left(z_{i}\right)=w_{i}, 1 \leq i \leq 3$.
- Any Möbius transformation different from the identity has one or two fixed points.
- Any Möbius transformation is conjugate (by another Möbius transformation) to a translation or a linear map.
- If a Möbius transformation has only one fixed point, then this fixed point is neutral.
- If a Möbius transformation has two fixed points, then either both are neutral, or one is attracting while the other is repelling.

Hyperbolic fixed points

Theorem 1 Suppose z_{0} is an attracting fixed point for a holomorphic function F. Then there exist $\delta>0$ and $0<\mu<1$ such that

$$
\left|F(z)-z_{0}\right| \leq \mu\left|z-z_{0}\right|
$$

for any $z \in D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}$. In particular, $\lim _{n \rightarrow \infty} F^{n}(z)=z_{0}$ for all $z \in D$.

Theorem 2 Suppose z_{0} is a repelling fixed point for a holomorphic function F. Then there exist $\delta>0$ and $M>1$ such that

$$
\left|F(z)-z_{0}\right| \geq M\left|z-z_{0}\right|
$$

for all $z \in D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}$. In particular, for any $z \in D \backslash\left\{z_{0}\right\}$ there is an integer $n \geq 1$ such that $F^{n}(z) \notin D$.

Hyperbolic fixed points

Theorem 3 Let F be a holomorphic function at 0 such that $F(0)=0$ and $F^{\prime}(0)=\lambda$, where $0<|\lambda|<1$. Then there is a neighborhood U of 0 and a holomorphic map $h: U \rightarrow \mathbb{C}$ such that $F \circ h=h \circ L$ in U, where $L(z)=\lambda z$.

The map h is represented as $h(z)=z+\sum_{i=2}^{\infty} c_{i} z^{i}$.
Theorem 4 Let F be a holomorphic function at 0 such that $F(0)=0$ and $F^{\prime}(0)=\lambda$, where $|\lambda|>1$. Then there is a neighborhood U of 0 and a holomorphic map $h: U \rightarrow \mathbb{C}$ such that $F \circ h=h \circ L$ in $L^{-1}(U)$, where $L(z)=\lambda z$.

Basin of attraction

Suppose z_{0} is an attracting fixed point of a holomorphic map F. Then the set $D_{z_{0}}$ of all points z satisfying $F^{n}(z) \rightarrow z_{0}$ as $n \rightarrow \infty$ is open. This set is called the basin of attraction for z_{0}. The connected component of $D_{z_{0}}$ containing z_{0} is called the immediate basin of attraction for z_{0}.

Examples. - $F(z)=z^{2}$.
0 is an attracting fixed point. The basin of attraction for 0 is the unit disc $\{z \in \mathbb{C}:|z|<1\}$, it is connected.

- $F(z)=z^{2}+i / 2$.

Example

- $F(z)=z^{2}-1$.

0 and -1 form a periodic orbit, which is attracting. The basin of attraction for each of these points has infinitely many connected components. Each component contains a unique eventually periodic point.
Also, there are two fixed points, which are repelling.

Neutral fixed points

Example. - $F(z)=z+z^{2}$.
The map has a fixed point at 0 , which is neutral: $F^{\prime}(0)=1$. The set D_{0} of all points z satisfying $F^{n}(z) \rightarrow 0$ as $n \rightarrow \infty$ is open and connected.

The fixed point 0 is one of the cusp points at the boundary of D_{0}. The others correspond to eventually fixed points.

