MATH 614

Lecture 22: The Julia and Fatou sets (continued).

Dynamical Systems and Chaos

ystems and Ci

The Julia set

Suppose $P:U\to U$ is a holomorphic map, where U is a domain in \mathbb{C} , the entire plane \mathbb{C} , or the Riemann sphere $\overline{\mathbb{C}}$.

Definition. The **Julia set** J(P) of P is the closure of the set of repelling periodic points of P.

Examples.
$$\bullet$$
 $L_2(z) = 2z$.

$$J(L_2) = \{0\}.$$

•
$$L_{1/2}(z) = z/2$$
.
 $J(L_{1/2}) = \{\infty\}$ since $L_{1/2} = H \circ L_2 \circ H^{-1}$, where $H(z) = 1/z$.

•
$$L_{1,1}(z) = z + 1$$
.

$$J(L_{1,1}(z) = z + 1)$$

 $J(L_{1,1}) = \emptyset.$

•
$$Q_0(z) = z^2$$
.
 $J(Q_0) = \{z \in \mathbb{C} : |z| = 1\}$.

•
$$Q_{-2}(z) = z^2 - 2$$
.

$$J(Q_{-2}) = [-2, 2]$$
. Note that $Q_{-2}(2\cos\alpha) = 2\cos(2\alpha)$.

Normal family

Let \mathcal{F} be a collection of holomorphic functions $F:U\to\mathbb{C}$ defined in a domain $U\subset\mathbb{C}$.

Definition. The collection \mathcal{F} is a **normal family** in U if every sequence F_1, F_2, \ldots of functions from \mathcal{F} has a subsequence F_{n_1}, F_{n_2}, \ldots $(1 \leq n_1 < n_2 < \ldots)$ which either (i) converges uniformly on compact subsets of U, or (ii) converges uniformly to ∞ on U.

The condition (i) means that there exists a function $f:U\to\mathbb{C}$ such that for any compact set $D\subset U$ we have

$$\sup_{z\in D}|F_{n_k}(z)-f(z)|\to 0 \ \text{as} \ k\to\infty.$$

The function f is going to be continuous.

The condition (ii) means that for any R>0 there exists an integer K>0 such that $|F_{n_k}(z)|>R$ for all $k\geq K$ and $z\in U$.

The Fatou set

Let \mathcal{F} be a collection of holomorphic functions defined in a domain $U \subset \overline{\mathbb{C}}$.

We say that the collection \mathcal{F} is **normal at** a finite point $z \in U$ if it is a normal family in some neighborhood of z. In the case $\infty \in U$, we say \mathcal{F} is **normal at infinity** if the collection of functions $G(z) = F(1/z), \ F \in \mathcal{F}$ is normal at 0.

Definition. The **Fatou set** S(P) of a holomorphic map $P: U \to U$ is the set of all points $z \in U$ such that the family of iterates $\{P^n\}_{n\geq 1}$ is normal at z.

By definition, the Fatou set is open.

Let \mathcal{F} be a collection of holomorphic functions defined in a domain $U \subset \overline{\mathbb{C}}$.

Theorem (Arzelà-Ascoli) Suppose the functions in \mathcal{F} are uniformly bounded and their derivatives are uniformly bounded.

Then any sequence F_1, F_2, \ldots of functions from \mathcal{F} has a subsequence F_{n_1}, F_{n_2}, \ldots which converges uniformly on compact subsets of U.

Corollary If the iterates of a holomorphic transformation P and their derivatives are uniformly bounded in a neighborhood of a point z, then $z \in S(P)$.

Theorem (Weierstrass) Let $F_1, F_2,...$ be holomorphic functions in a domain U. Assume that the sequence $F_1, F_2,...$ converges uniformly on compact subsets of U.

Then the limit function F is holomorphic in U and, moreover, the sequence of derivatives F'_1, F'_2, \ldots converges to F' uniformly on compact subsets of U.

Corollary Let $z \in \mathbb{C}$. Assume that there exists a sequence of iterates P^{n_1}, P^{n_2}, \ldots such that $P^{n_k}(z) \not\to \infty$ while $(P^{n_k})'(z) \to \infty$ as $k \to \infty$. Then $z \notin S(P)$.

The Fatou set and periodic points

Proposition 1 Attracting periodic points of P belong to S(P).

Proof: Suppose z_0 is an attracting periodic point of period n. Then $P^n(z_0)=z_0$ and $|P^n(z)-z_0|\leq \mu|z-z_0|$ for some $0<\mu<1$ and all z close enough to z_0 . Hence there is a neighborhood D of z_0 such that the functions $P^n, P^{2n}, P^{3n}, \ldots$ converge to the constant z_0 uniformly on D. Then for any integer $k\geq 1$ the functions $P^{n+k}, P^{2n+k}, P^{3n+k}, \ldots$ converge to the constant $P^k(z_0)$ uniformly on D.

It follows that the sequence P, P^2, P^3, \ldots is normal at z_0 .

The Fatou set and periodic points

Proposition 2 Repelling periodic points of P do not belong to S(P).

Proof: Suppose z is a repelling periodic point of period n. Then $P^n(z)=z$ and $|(P^n)'(z)|>1$. For any integer $k\geq 1$ we have $P^{nk}(z)=z$ and $(P^{nk})'(z)=\left((P^n)'(z)\right)^k$. As a consequence, $P^{nk}(z)\not\to\infty$ while $(P^{nk})'(z)\to\infty$ as $k\to\infty$. By the above, $z\notin S(P)$.

Corollary The Julia set and the Fatou set of P are disjoint.

The Fatou set and periodic points

Neutral periodic points of P may or may not belong to S(P).

Examples. •
$$P(z) = e^{i\alpha}z$$
, where $\alpha \in \mathbb{R}$.

The neutral fixed point 0 belongs to the Fatou set S(P). Indeed, $P^n(z)=e^{in\alpha}z$ and $(P^n)'(z)=e^{in\alpha}$ for all $z\in\mathbb{C}$ and $n=1,2,\ldots$ Therefore all iterates of P and their derivatives are uniformly bounded in a neighborhood of 0.

$$P(z) = z + z^2.$$

The neutral fixed point 0 does not belong to the Fatou set S(P). Indeed, for any ε , $0 < \varepsilon < 1$, we have $P^n(-\varepsilon) \to 0$ as $n \to \infty$ while $P^n(\varepsilon) \to \infty$ as $n \to \infty$. It follows that the iterates of P are not normal at 0.

Invariance

Proposition 1 The Julia set of a holomorphic map $P: U \to U$ is invariant: $P(J(P)) \subset J(P)$.

Proof: Let $z \in J(P)$. There are repelling periodic points z_1, z_2, \ldots of P such that $z_n \to z$ as $n \to \infty$. By continuity, $P(z_n) \to P(z)$ as $n \to \infty$. Clearly, $P(z_1), P(z_2), \ldots$ are also repelling periodic points of P.

Proposition 2 P(J(P)) = J(P).

Proof: Let $z \in J(P)$ and $z_n \to z$ as $n \to \infty$, where z_1, z_2, \ldots are repelling periodic points of P. Then there are repelling periodic points w_1, w_2, \ldots such that $P(w_n) = z_n$. The sequence w_1, w_2, \ldots is bounded, hence there is a converging subsequence: $w_{n_k} \to w$ as $k \to \infty$. Then $z_{n_k} = P(w_{n_k}) \to P(w)$. We have $w \in J(P)$ and P(w) = z.

Invariance

Proposition 3 The Fatou set of P is completely invariant under this map: $P(S(P)) \subset S(P)$ and $P^{-1}(S(P)) \subset S(P)$.

Proof: Suppose P(w) = z. We have to show that the family P, P^2, P^3, \ldots is normal at z if and only if it is normal at w.

Indeed, let f be a nonconstant holomorphic function such that f(w) = z. Then P, P^2, P^3, \ldots is normal at z if and only if the family $P \circ f, P^2 \circ f, P^3 \circ f, \ldots$ is normal at w.

The Fatou components

The Fatou set S(P) of a nonconstant holomorphic map $P: U \to U$ is open. Connected components of this set are called the **Fatou components** of P.

Proposition 1 For any Fatou component D of P, the image P(D) is also a Fatou component of P.

Proposition 2 For any Fatou component D of a rational map P there exist integers $k \ge 0$ and $n \ge 1$ such that the Fatou component $P^k(D)$ is invariant under P^n .

The Fatou components

There are 4 types of invariant Fatou components for rational maps:

- immediate basin of attraction of an attracting fixed point lying inside the component;
- attracting petal of a neutral fixed point lying on the boundary of the component;
- **Siegel disc**: the restriction of the map to the component is holomorphically conjugate to a rotation of the disc;
- **Herman ring**: the restriction of the map to the component is holomorphically conjugate to a rotation of the annulus.

Montel's Theorem

Theorem (Montel) Suppose \mathcal{F} is a family of holomorphic functions defined on a domain $U \subset \mathbb{C}$. If the functions from \mathcal{F} do not assume two values $a,b\in\mathbb{C}$, then \mathcal{F} is a normal family in U.

Corollary 1 If $P: U \to U$ is a holomorphic map, where $U \subset \mathbb{C}$ and $\mathbb{C} \setminus U$ contains at least two points, then S(P) = U and $J(P) = \emptyset$.

Corollary 2 Suppose $z \in J(P)$ and W is a neighborhood of z. Then $\bigcup_{n=1}^{\infty} P^n(W)$ is either \mathbb{C} or \mathbb{C} minus one point.

Theorem If the Julia set J(P) consists of more than one repelling orbit, then the map P is chaotic on J(P).

This holds by definition of J(P). (ii) Topological transitivity: for any nonempty open sets $U_1, U_2 \subset J(P)$ there exists $n \ge 1$ such that

Proof: (i) Periodic points of P are dense in J(P).

 $P^n(U_1) \cap U_2 \neq \emptyset$. Here $U_1 = W_1 \cap J(P)$, $U_2 = W_2 \cap J(P)$, where W_1 , W_2 are open sets in \mathbb{C} .

We know that $\bigcup_{n\geq 1} P^n(W_1)$ is \mathbb{C} or \mathbb{C} minus one point. It follows that $P^n(W_1)\cap U_2\neq\emptyset$ for some n. But $P^n(W_1)\cap U_2=P^n(U_1)\cap U_2$.

(iii) Sensitive dependence on initial conditions: there exists $\beta > 0$ such that for any $z_0 \in J(P)$ and any neighborhood U of z_0 (in J(P)) we have

 $|P^n(z) - P^n(z_0)| \ge \beta$ for some $n \ge 1$ and $z \in U$. The Julia set contains two different repelling periodic orbits:

 z_1, z_2, \ldots, z_m and w_1, w_2, \ldots, w_k . Choose $\beta > 0$ so that $|z_i - w_i| > 2\beta$ for all j and l.

We know that $\bigcup_{n\geq 1} P^n(U) = J(P)$. Therefore we can find $z, w \in U$ such that $P^{n_1}(z) = z_1$ and $P^{n_2}(w) = w_1$ for some $n_1, n_2 \geq 1$. Now take any $n \geq \max(n_1, n_2)$. Then $P^n(z)$ is in the cycle z_1, z_2, \ldots, z_m while $P^n(w)$ is in the cycle

 w_1, w_2, \ldots, w_k . In particular, $|P^n(z) - P^n(w)| > 2\beta$. It follows that $|P^n(z) - P^n(z_0)| > \beta$ or $|P^n(w) - P^n(z_0)| > \beta$.