Dynamical Systems and Chaos

MATH 614

Lecture 25:

Ergodic theorems.

Ergodicity and mixing.

Measure-preserving transformation

Definition. A **measured space** is a triple (X, \mathcal{B}, μ) , where X is a set, \mathcal{B} is a σ -algebra of (measurable) subsets of X, and $\mu: \mathcal{B} \to [0, \infty]$ is a σ -additive measure on X (finite or σ -finite).

A mapping $T: X \to X$ is called **measurable** if preimage of any measurable set under T is also measurable: $E \in \mathcal{B} \implies T^{-1}(E) \in \mathcal{B}$.

A measurable mapping $T: X \to X$ is called **measure-preserving** if for any $E \in \mathcal{B}$ one has $\mu(T^{-1}(E)) = \mu(E)$.

Borel sets

Proposition Given a collection S of subsets of X, there exists a minimal σ -algebra of subsets of X that contains S.

Suppose X is a topological space. The **Borel** σ -algebra $\mathcal{B}(X)$ is the minimal σ -algebra that contains all open subsets of X. Elements of $\mathcal{B}(X)$ are called **Borel sets**.

A mapping $F: X \to X$ is measurable relative to $\mathcal{B}(X)$ if and only if the preimage of any open set is Borel. In particular, each continuous map is measurable.

Recurrence

 (X, \mathcal{B}, μ) : measured space $T: X \to X$: measure-preserving mapping

Let *E* be a measurable subset of *X*. A point $x \in E$ is called **recurrent** if $T^n(x) \in E$ for some $n \ge 1$.

A point $x \in E$ is called **infinitely recurrent** if the orbit x, T(x), $T^2(x)$, . . . visits E infinitely many times.

Theorem (Poincaré) Suppose μ is a finite measure. Then almost all points of E are infinitely recurrent.

Individual ergodic theorem

Let (X, \mathcal{B}, μ) be a measured space and $T: X \to X$ be a measure-preserving transformation.

Birkhoff's Ergodic Theorem For any function $f \in L_1(X, \mu)$, the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k(x)) = f^*(x)$$

exists for almost all $x \in X$. The function f^* is T-invariant, i.e., $f^* \circ T = f^*$ almost everywhere. If μ is finite then $f^* \in L_1(X, \mu)$ and

$$\int_X f^* d\mu = \int_X f d\mu.$$

Ergodicity

Let (X, \mathcal{B}, μ) be a measured space and $T: X \to X$ be a measure-preserving transformation.

We say that a measurable set $E \subset X$ is **invariant** under T if $\mu(E \triangle T^{-1}(E)) = 0$, that is, if $E = T^{-1}(E)$ up to a set of zero measure.

Note that there is a measurable set $E_0 \subset E$ such that $\mu(E \triangle E_0) = 0$ and $T^{-1}(E_0) = E_0$. Namely, let $E_1 = E \cup T^{-1}(E) \cup T^{-2}(E) \cup \ldots$ Then $E \subset E_1$, $\mu(E_1 \setminus E) = 0$, $\mu(E_1 \triangle T^{-1}(E_1)) = 0$, and $T^{-1}(E_1) \subset E_1$. Now $E_0 = E_1 \cap T^{-1}(E_1) \cap T^{-2}(E_1) \cap \ldots$

Definition. The transformation T is called **ergodic** with respect to μ if any T-invariant measurable set E has either zero or full measure: $\mu(E) = 0$ or $\mu(X \setminus E) = 0$.

Birkhoff's Ergodic Theorem (ergodic case)

Suppose μ is finite and T is ergodic. Given $f \in L_1(X, \mu)$, for almost all $x \in X$ we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(T^k(x))=\frac{1}{\mu(X)}\int_Xf\ d\mu.$$

(time average is equal to space average)

In the case $f=\chi_E$ $(E\in\mathcal{B})$, we obtain

$$\lim_{n \to \infty} \frac{\#\{0 \le k \le n - 1 \mid T^k(x) \in E\}}{n} = \frac{\mu(E)}{\mu(X)}.$$

(almost every orbit is uniformly distributed)

Koopman's operator

 (X, \mathcal{B}, μ) : measured space

 $T: X \to X$: measure-preserving transformation

To any function $f: X \to \mathbb{C}$ we assign another function Uf defined by (Uf)(x) = f(T(x)) for all $x \in X$.

Linear functional operator $U: f \mapsto Uf$.

Proposition If f is integrable then so is Uf. Moreover,

$$\int_X Uf \ d\mu = \int_X f(T(x)) \ d\mu(x) = \int_X f \ d\mu.$$

 $f \in L_2(X,\mu)$ means that $\int_X |f|^2 d\mu < \infty$.

 $L_2(X,\mu)$ is a Hilbert space with respect to the inner product

$$(f,g) = \int_X f(x)\overline{g(x)} d\mu(x).$$

Let T be a measure-preserving transformation and U be the associated operator.

Then $U(L_2(x,\mu)) \subset L_2(X,\mu)$. Furthermore,

$$(Uf,Ug)=(f,g)$$

for all $f, g \in L_2(X, \mu)$.

That is, U is an **isometric** operator in the Hilbert space $L_2(X, \mu)$. If T is invertible and T^{-1} is also measure-preserving, then U is a **unitary** operator.

Mean ergodic theorem

von Neumann's Ergodic Theorem Suppose U is an isometric operator in a Hilbert space \mathcal{H} . Then for any $f \in \mathcal{H}$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}U^kf=f^*\ (\text{in }\mathcal{H}),$$

where $f^* \in \mathcal{H}$ is the orthogonal projection of f on the subspace of U-invariant functions in \mathcal{H} .

Namely, $Uf^* = f^*$ and $(f - f^*, g) = 0$ for any element $g \in \mathcal{H}$ such that Ug = g.

If U is associated to a measure-preserving map $T: X \to X$, then for any $f \in L_2(X, \mu)$ we have

$$\lim_{n\to\infty}\int_X\left|\frac{1}{n}\sum_{k=0}^{n-1}U^kf-f^*\right|^2d\mu\to 0,$$

where $f^* \in L_2(X, \mu)$ and $Uf^* = f^*$.

Lemma T is ergodic if and only if Uf = f for a measurable function f implies f is constant (almost everywhere).

If T is ergodic then

$$\lim_{n\to\infty}\int_{\mathbf{Y}}\left|\frac{1}{n}\sum_{k=0}^{n-1}U^kf-c\right|^2d\mu\to 0,$$

where

$$c = \frac{1}{\mu(X)} \int_{X} f \, d\mu.$$

Rotations of the circle

Measured space $(S^1, \mathcal{B}(S^1), \mu)$, where μ is the length measure on S^1 .

 R_{α} : rotation of the unit circle by angle α . R_{α} is a measure-preserving homeomorphism.

Theorem If α is not commensurable with π , then the rotation R_{α} is ergodic.

Let U_{α} be the associated operator on $L_2(S^1, \mu)$.

Relative to the angular coordinate on S^1 , elements of $L_2(S^1,\mu)$ are 2π -periodic functions on \mathbb{R} . The inner product is given by

$$(f,g) = \int_0^{2\pi} f(x) \overline{g(x)} \, dx.$$

The operator U_{α} acts as follows:

$$(U_{\alpha}f)(x) = f(x+\alpha), \ \ x \in \mathbb{R}.$$

For any $m \in \mathbb{Z}$ let $h_m(x) = e^{imx}$, $x \in \mathbb{R}$. Then $h_m \in L_2(S^1, \mu)$ and $U_\alpha h_m = e^{im\alpha} h_m$ so that h_m is an eigenfunction of U_α . Note that $\{h_m\}_{m \in \mathbb{Z}}$ is an orthogonal basis of the Hilbert space $L_2(X, \mu)$. We say that U_α has **pure point spectrum**.

Any $f \in L_2(X, \mu)$ is uniquely expanded as

$$f = \sum_{m \in \mathbb{Z}} c_m h_m$$
, (Fourier series)

where $c_m \in \mathbb{C}$. Then

$$U_{lpha}f=\sum
olimits_{m\in\mathbb{Z}}e^{imlpha}c_{m}h_{m}.$$

Hence $U_{\alpha}f=f$ only if $(e^{im\alpha}-1)c_m=0$ for all $m\in\mathbb{Z}$. That is, if $f=c_0$, a constant.

Mixing

 (X, \mathcal{B}, μ) : measured space of finite measure $\mathcal{T}: X \to X$: measure-preserving transformation

T is called **mixing** if for any measurable sets $A, B \subset X$ we have

$$\lim_{n\to\infty}\mu(T^{-n}(A)\cap B)=\frac{\mu(A)\mu(B)}{\mu(X)}.$$

Lemma Mixing \Longrightarrow ergodicity.

Proof: Suppose $C \subset X$ is measurable and T-invariant. Then $T^{-n}(C) = C$ up to a set of zero measure. Therefore $\mu(T^{-n}(C) \cap C) = \mu(C)$.

If T is mixing then $\mu(C) = \mu(C)\mu(C)/\mu(X)$, which implies that $\mu(C) = 0$ or $\mu(C) = \mu(X)$.

Doubling map 1/2

$$D: [0,1) \rightarrow [0,1),$$

 $D(x) = 2x \mod 1, x \in [0,1).$

Theorem The doubling map is mixing.

Proof: Let $A \subset [0,1)$ and $n \geq 1$. Then $D^{-n}(A)$ is the union of 2^n disjoint pieces $\frac{1}{2^n}A + \frac{k}{2^n}$, $k = 0, 1, \dots, 2^n - 1$.

Suppose $B = \left[\frac{l}{2^m}, \frac{l+1}{2^m}\right)$, where m > 0, $0 \le l < 2^m$. If $n \ge m$ then exactly 2^{n-m} pieces are contained in B, the others are disjoint from B. Hence $\mu(D^{-n}(A) \cap B) = 2^{n-m} \cdot 2^{-n} \mu(A) = \mu(A)\mu(B)$.

Since any measurable set ${\cal B}$ can be approximated by disjoint unions of the above intervals,

$$\lim_{A \to \infty} \mu(D^{-n}(A) \cap B) = \mu(A)\mu(B).$$

Proposition The rotation R_{α} of the circle is not mixing.

Proof: For any $\varepsilon > 0$ there exists n > 0 such that $R_{\alpha}^{n} = R_{n\alpha}$ is the rotation by an angle $< \varepsilon$.

Hence there exists a sequence $n_1 < n_2 < \dots$ such that for any arc $\gamma \subset S^1$,

that for any arc
$$\gamma\subset S^1$$
, $\lim_{k o\infty}\mu(R_lpha^{-n_k}(\gamma)\cap\gamma)=\mu(\gamma).$

But $\mu(\gamma) \neq \mu(\gamma)\mu(\gamma)/\mu(S^1)$ if $\gamma \neq S^1$.

 (X, \mathcal{B}, μ) : measured space of finite measure $T: X \to X$: measure-preserving transformation

T is mixing if and only if for any $f,g\in L_2(X,\mu)$,

$$\lim_{n\to\infty}\int_X f(T^n(x))g(x)\,d\mu(x)=\frac{1}{\mu(X)}\int_X f\,d\mu\int_X g\,d\mu.$$

$$\lim_{n \to \infty} (U^n f, g) = \frac{(f, 1)(1, g)}{(1, 1)}.$$

Suppose f is a nonconstant eigenfunction of U, $Uf = \lambda f$, $|\lambda| = 1$. It is no loss to assume that (f,1) = 0. Obviously,

$$(U^n f, f) = \lambda^n (f, f) \not\to 0 \text{ as } n \to \infty.$$

 (X, \mathcal{B}, μ) : measured space of finite measure $T: X \to X$: measure-preserving transformation $U: L_2(X, \mu) \to L_2(X, \mu)$: associated linear operator

T is called **weakly mixing** if U has no eigenfunctions other than constants.

mixing \Longrightarrow weak mixing \Longrightarrow ergodicity In particular, the doubling map has no nonconstant eigenfunctions. In this case, the operator U has **countable Lebesgue spectrum**. Namely, there are functions f_{nm} (n, m = 1, 2, ...) on S^1 such that 1 and f_{nm} , $n, m \ge 1$ form an orthogonal basis for $L_2(X, \mu)$, and $Uf_{nm} = f_{n,m+1}$ for any $n, m \ge 1$. Translation of the torus $R_{\alpha,\beta}: \mathbb{T}^2 \to \mathbb{T}^2$, $\alpha, \beta \in \mathbb{R}$. $R_{\alpha,\beta}(x_1,x_2) = (x_1 + \alpha, x_2 + \beta)$.

 $R_{\alpha\beta}$ is a measure-preserving homeomorphism.

Theorem $R_{\alpha,\beta}$ has pure point spectrum. It is ergodic if and only if the numbers α , β , and 1 are linearly independent over $\mathbb Q$ (i.e., for any $k,m,n\in\mathbb Z$ the equality $k\alpha+m\beta+n=0$ implies k=m=n=0).

Theorem Any hyperbolic toral automorphism T_A of the flat torus is ergodic.

Proof: Let $f: \mathbb{T}^2 \to \mathbb{C}$ be a continuous function. By Birkhoff's Ergodic Theorem, for almost all $x \in \mathbb{T}^2$:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(T_A^k(x))=f^*(x),$$

where f^* is an integrable function. Also, for almost all $x \in \mathbb{T}^2$:

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T_A^{-k}(x)) = f^{**}(x),$$

where f^{**} is an integrable function.

von Neumann's Ergodic Theorem implies that $f^* = f^{**}$ almost everywhere.

Let $x \in \mathbb{T}^2$ and $y \in W^s(x)$. Then $\operatorname{dist}(T_A^n(y), T_A^n(x)) \to 0$ as $n \to \infty$.

Since f is continuous, it follows that $|f(T_A^n(y)) - f(T_A^n(x))| \to 0$ as $n \to \infty$. Therefore $f^*(y) = f^*(x)$.

Similarly, if $y \in W^u(x)$ then $f^{**}(y) = f^{**}(x)$.

Thus f^* is constant along leaves of the stable foliation while f^{**} is constant along leaves of the unstable foliation. Since $f^* = f^{**}$ a.e., it follows that f^* is constant almost everywhere.

Doubling map $D_2 : \mathbb{T}^2 \to \mathbb{T}^2$; $D_2(x_1, x_2) = (2x_1 \mod 1, 2x_2 \mod 1)$.

Theorem The doubling map on the torus preserves measure and is mixing. It has countable Lebesgue spectrum.



