MATH 614 Dynamical Systems and Chaos Lecture 5: Cantor sets. Metric and topological spaces.

Cantor sets

Definition. A subset Λ of the real line \mathbb{R} is called a (general) **Cantor set** if it is

- nonempty,
- compact, which means that Λ is bounded and closed,

- totally disconnected, which means that Λ contains no intervals, and

• perfect, which means that Λ has no isolated points.

Unimodal maps

Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous map such that

•
$$f(0) = f(1) = 0;$$

• there exists a point $x_{\max} \in (0, 1)$ such that f is strictly increasing on $(-\infty, x_{\max}]$ and strictly decreasing on $[x_{\max}, \infty)$;

•
$$f(x_{\max}) > 1$$
.

The map f is called **unimodal**.

Itinerary map

Let $f : \mathbb{R} \to \mathbb{R}$ be a unimodal map, Λ be the set of all points $x \in \mathbb{R}$ such that $O_f^+(x) \subset [0, 1]$, and $S : \Lambda \to \Sigma_2$ be the **itinerary map** introduced in the previous lecture.

Proposition 1 The set Λ is compact and has no isolated points.

Proposition 2 $S \circ f = \sigma \circ S$ on Λ , where $\sigma : \Sigma_2 \to \Sigma_2$ is the shift map.

Proposition 3 The itinerary map *S* is onto.

Proposition 4 The set Λ is a Cantor set if and only if the itinerary map *S* is one-to-one.

In the case f is the tent map with $\mu = 3$, the interval A_0 is the middle third of [0, 1] so that Λ_3 is exactly the Cantor Middle-Thirds Set.

The set Λ_3 consists of those points $x \in [0, 1]$ that admit a ternary expansion $0.s_1s_2...$ without any 1's (only 0's and 2's), in which case $S_3(x) = (\bar{s}_1\bar{s}_2...)$, where $\bar{0} = 0$ and $\bar{2} = 1$. For any $\mu > 2$, the set Λ_{μ} is a fractal set of dimension $\log_{\mu} 2 < 1$.

General Cantor sets

Definition. A subset Λ of the real line \mathbb{R} is called a (general) **Cantor set** if it is

- nonempty,
- compact, which means that Λ is bounded and closed,
- totally disconnected, which means that Λ contains no intervals, and
 - perfect, which means that Λ has no isolated points.

Theorem Any two Cantor sets are homeomorphic. That is, if Λ and Λ' are Cantor sets, then there exists a homeomorphism $\phi : \Lambda \to \Lambda'$ (an invertible map such that both ϕ and ϕ^{-1} are continuous).

Furthermore, the homeomorphism ϕ can be chosen strictly increasing, in which case it can be extended to a homeomorphism $\tilde{\phi} : \mathbb{R} \to \mathbb{R}$.

An open subset $U \subset \mathbb{R}$ is a union of open intervals. An open interval (a, b) is called a **maximal subinterval** of U if there is no other interval (c, d) such that $(a, b) \subset (c, d) \subset U$.

Lemma 1 Any point of U is contained in a maximal subinterval.

Lemma 2 Finite endpoints of a maximal subinterval do not belong to U.

Lemma 3 Distinct maximal subintervals are disjoint.

Lemma 4 There are at most countably many maximal subintervals.

Lemma 5 If Λ is a Cantor set, then for any two maximal subintervals of $\mathbb{R} \setminus \Lambda$ there is another maximal subinterval that lies between them.

Lemma 6 If Λ, Λ' are Cantor sets sets then there exists a monotone one-to-one correspondence between maximal subintervals of their complements.

Metric space

Definition. Given a nonempty set X, a **metric** (or **distance function**) on X is a function $d : X \times X \to \mathbb{R}$ that satisfies the following conditions:

• (positivity) $d(x, y) \ge 0$ for all $x, y \in X$; moreover, d(x, y) = 0 if and only if x = y;

• (symmetry) d(x,y) = d(y,x) for all $x, y \in X$;

• (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a **metric space**.

Examples of metric spaces

• Real line
$$X = \mathbb{R}, \ d(x, y) = |y - x|.$$

• Euclidean space

$$X = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}$.

- Normed vector space
- X: vector space with a norm $\|\cdot\|$, $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} \mathbf{x}\|$.
- Discrete metric space

X: any nonempty set, d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y.

• Subspace of a metric space

X: nonempty subset of a metric space Y with a distance function $\rho: Y \times Y \to \mathbb{R}$, d is the restriction of ρ to $X \times X$.

Convergence and continuity

Suppose (X, d) is a metric space, that is, X is a set and d is a metric on X.

We say that a sequence of points $x_1, x_2, ...$ of the set X converges to a point $y \in X$ if $d(x_n, y) \to 0$ as $n \to \infty$.

Given another metric space (Y, ρ) and a function $f: X \to Y$, we say that f is **continuous at a point** $x_0 \in X$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, x_0) < \delta \implies \rho(f(x), f(x_0)) < \varepsilon$.

We say that the function f is **continuous on a set** $U \subset X$ if it is continuous at each point of U.

Open sets

Let (X, d) be a metric space. For any $x_0 \in X$ and $\varepsilon > 0$ we define the **open ball** (or simply **ball**) $B_{\varepsilon}(x_0)$ of radius ε centered at x_0 by $B_{\varepsilon}(x_0) = \{x \in X \mid d(x, x_0) < \varepsilon\}$. The ball $B_{\varepsilon}(x_0)$ is also called the ε -neighborhood of x_0 .

A subset U of the metric space X is called **open** if for every point $x \in U$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$.

Let (Y, ρ) be another metric space and $f : X \to Y$ be a function.

Proposition 1 The function f is continuous at a point $x \in X$ if and only if for every open set $W \subset Y$ containing f(x) there is an open set $U \subset X$ containing x such that $f(U) \subset W$.

Proposition 2 The function f is continuous on the entire set X if and only if for any open set $W \subset Y$ the preimage $f^{-1}(W)$ is an open set in X.

Topological space

Definition. Given a nonempty set X, a **topology** on X is a collection \mathcal{U} of subsets of X such that

- $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$,
- any intersection of finitely many elements of $\, \mathcal{U}$ is also in $\, \mathcal{U}, \,$
- any union of elements of \mathcal{U} is also in \mathcal{U} .

Elements of \mathcal{U} are referred to as **open sets** of the topology. A set endowed with a topology is called a **topological space**.

We say that a sequence of points x_1, x_2, \ldots of the topological space X converges to a point $y \in X$ if for every open set $U \in \mathcal{U}$ containing y there exists a natural number n_0 such that $x_n \in U$ for $n \ge n_0$.

Given another topological space Y and a function $f : X \to Y$, we say that f is **continuous** if for any open set $W \subset Y$ the preimage $f^{-1}(W)$ is an open set in X.

Examples of topological spaces

• Metric space

X: a metric space, \mathcal{U} : the set of all open subsets of X (\mathcal{U} is referred to as the topology induced by the metric).

- Trivial topology
- X: any nonempty set, $U = \{\emptyset, X\}$.
 - Discrete topology
- X: any nonempty set, \mathcal{U} : the set of all subsets of X.
 - Subspace of a topological space

X: nonempty subset of a topological space Y with a topology \mathcal{W} , $\mathcal{U} = \{ U \cap X \mid U \in \mathcal{W} \}.$