MATH 614
Dynamical Systems and Chaos
Lecture 5:

Cantor sets.
Metric and topological spaces.



Cantor sets

Cantor Middle-Thirds Set
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Definition. A subset A of the real line R is called a (general)
Cantor set if it is

® nonempty,

e compact, which means that A is bounded and closed,

e totally disconnected, which means that A contains no
intervals, and

e perfect, which means that A has no isolated points.



Unimodal maps

Let f : R — R be a continuous map such that

e f(0)=1(1)=0;

e there exists a point Xmax € (0,1) such that f is strictly
increasing on (—00, Xmax] and strictly decreasing on [Xmax, 0);

o f(Xmax) > 1.

The map f is called unimodal.
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Itinerary map

Let f : R — R be a unimodal map, A be the set of all points
x € R such that Of(x) € [0,1], and S: A — X, be the
itinerary map introduced in the previous lecture.

Proposition 1 The set A is compact and has no isolated
points.

Proposition 2 Sof =005 on A, where 0:%, = ¥, is
the shift map.

Proposition 3 The itinerary map S is onto.

Proposition 4 The set A is a Cantor set if and only if the
itinerary map S is one-to-one.



In the case f is the tent map with © = 3, the
interval A is the middle third of [0, 1] so that A3 is
exactly the Cantor Middle-Thirds Set.
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The set Az consists of those points x € [0, 1] that
admit a ternary expansion 0.s;s,... without any
1's (only 0's and 2's), in which case

S3(x) = (515 ...), where 0 =0 and 2 =1.

For any p > 2, the set A, is a fractal set of
dimension log, 2 < 1.



General Cantor sets

Definition. A subset A of the real line R is called a (general)
Cantor set if it is

e nonempty,

e compact, which means that A is bounded and closed,

e totally disconnected, which means that A contains no
intervals, and

e perfect, which means that A has no isolated points.

Theorem Any two Cantor sets are homeomorphic.

That is, if A and A" are Cantor sets, then there exists a
homeomorphism ¢ : A — A’ (an invertible map such that
both ¢ and ¢! are continuous).

Furthermore, the homeomorphism ¢ can be chosen strictly

increasing, in WhiCNh case it can be extended to a
homeomorphism ¢ : R — R.



An open subset U C R is a union of open intervals. An open
interval (a, b) is called a maximal subinterval of U if there
is no other interval (c,d) such that (a, b) C (c,d) C U.

Lemma 1 Any point of U is contained in a maximal
subinterval.

Lemma 2 Finite endpoints of a maximal subinterval do not
belong to U.

Lemma 3 Distinct maximal subintervals are disjoint.

Lemma 4 There are at most countably many maximal
subintervals.

Lemma 5 If A is a Cantor set, then for any two maximal
subintervals of R\ A there is another maximal subinterval
that lies between them.

Lemma 6 If A, A" are Cantor sets sets then there exists a
monotone one-to-one correspondence between maximal
subintervals of their complements.



Metric space

Definition. Given a nonempty set X, a metric (or distance
function) on X is a function d : X x X — R that satisfies
the following conditions:

e (positivity) d(x,y) > 0 for all x,y € X; moreover,
d(x,y) =0 if and only if x = y;

e (symmetry) d(x,y) = d(y,x) forall x,y € X;

e (triangle inequality) d(x,y) < d(x,z)+ d(z,y) for all
x,y,z€ X.

A set endowed with a metric is called a metric space.



Examples of metric spaces

o Real line
X =R, dx,y)=1|y—x|.

e FEuclidean space
X =R" d(x,y) =v/(y1 =)+ (2 = %)%+ - - + (Vo — xn)?.

e Normed vector space
X: vector space with a norm || - ||, d(x,y) = |y — x|

e Discrete metric space
X: any nonempty set, d(x,y)=1if x#y and d(x,y)=0
if x=y.

e Subspace of a metric space

X: nonempty subset of a metric space Y with a distance
function p: Y x Y — R, d is the restriction of p to X x X.



Convergence and continuity

Suppose (X, d) is a metric space, that is, X is a
set and d is a metric on X.

We say that a sequence of points xq, x»,... of the
set X converges to a point y € X if d(x,,y) — 0
as n — oo.

Given another metric space (Y, p) and a function
f: X — Y, wesay that f is continuous at a
point xg € X if for every € > 0 there exists 6 >0
such that d(x,x) <d = p(f(x), f(x0)) < e.

We say that the function f is continuous on a set
U C X if it is continuous at each point of U.



Open sets

Let (X,d) be a metric space. Forany x, € X and € >0 we
define the open ball (or simply ball) B.(xy) of radius ¢
centered at xg by B.(x0) = {x € X | d(x,x0) < ¢}.

The ball B.(x) is also called the e-neighborhood of xg.

A subset U of the metric space X is called open if for every
point x € U there exists ¢ > 0 such that B.(x) C U.

Let (Y,p) be another metric space and f : X — Y be a
function.

Proposition 1 The function f is continuous at a point x € X
if and only if for every open set W C Y containing f(x) there
is an open set U C X containing x such that f(U) C W.

Proposition 2 The function f is continuous on the entire set
X if and only if for any open set W C Y the preimage
f~1(W) is an open set in X.



Topological space

Definition. Given a nonempty set X, a topology on X is a
collection U of subsets of X such that

e ) clU and X €U,
e any intersection of finitely many elements of U/ is also in U,
e any union of elements of U is also in U.

Elements of U are referred to as open sets of the topology.
A set endowed with a topology is called a topological space.

We say that a sequence of points xi, X, ... of the topological
space X converges to a point y € X if for every open set

U € U containing y there exists a natural number ng such
that x, € U for n > ng.

Given another topological space Y and a function f: X — Y,
we say that f is continuous if for any open set W C Y the
preimage f (W) is an open set in X.



Examples of topological spaces

e Metric space

X: a metric space, U: the set of all open subsets of X
(U is referred to as the topology induced by the metric).

e Trivial topology
X: any nonempty set, U = {0, X}.

e Discrete topology
X: any nonempty set, U: the set of all subsets of X.

e Subspace of a topological space

X: nonempty subset of a topological space Y with a topology
W, U={UnX|UeW}.



