MATH 614 Dynamical Systems and Chaos Lecture 6: Symbolic dynamics.

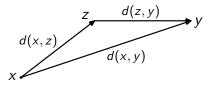
Metric space

Definition. Given a nonempty set X, a **metric** (or **distance function**) on X is a function $d : X \times X \to \mathbb{R}$ that satisfies the following conditions:

• (positivity) $d(x, y) \ge 0$ for all $x, y \in X$; moreover, d(x, y) = 0 if and only if x = y;

• (symmetry) d(x,y) = d(y,x) for all $x, y \in X$;

• (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.



A set endowed with a metric is called a **metric space**.

Topological space

Definition. Given a nonempty set X, a **topology** on X is a collection \mathcal{U} of subsets of X such that

- $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$,
- any intersection of finitely many elements of $\, \mathcal{U}$ is also in $\, \mathcal{U}, \,$
- any union of elements of \mathcal{U} is also in \mathcal{U} .

Elements of \mathcal{U} are referred to as **open sets** of the topology. A set endowed with a topology is called a **topological space**.

We say that a sequence of points x_1, x_2, \ldots of the topological space X converges to a point $y \in X$ if for every open set $U \in \mathcal{U}$ containing y there exists a natural number n_0 such that $x_n \in U$ for $n \ge n_0$.

Given another topological space Y and a function $f : X \to Y$, we say that f is **continuous** if for any open set $W \subset Y$ the preimage $f^{-1}(W)$ is an open set in X.

Examples of topological spaces

• Metric space

X: a metric space, \mathcal{U} : the set of all open subsets of X (\mathcal{U} is referred to as the topology induced by the metric).

- Trivial topology
- X: any nonempty set, $U = \{\emptyset, X\}$.
 - Discrete topology
- X: any nonempty set, \mathcal{U} : the set of all subsets of X.
 - Subspace of a topological space

X: nonempty subset of a topological space Y with a topology \mathcal{W} , $\mathcal{U} = \{ U \cap X \mid U \in \mathcal{W} \}.$

Space of infinite sequences

Let \mathcal{A} be a finite set. We denote by $\Sigma_{\mathcal{A}}$ the set of all infinite sequences $\mathbf{s} = (s_1 s_2 \dots), s_i \in \mathcal{A}$. Elements of $\Sigma_{\mathcal{A}}$ are also referred to as **infinite words** over the **alphabet** \mathcal{A} .

For any finite sequence $s_1 s_2 \ldots s_n$ of elements of \mathcal{A} let $C(s_1 s_2 \ldots s_n)$ denote the set of all infinite words $\mathbf{s} \in \Sigma_{\mathcal{A}}$ that begin with this sequence. The sets $C(s_1 s_2 \ldots s_n)$ are called **cylinders**. Let \mathcal{U} be the collection of all subsets of $\Sigma_{\mathcal{A}}$ that can be represented as unions of cylinders.

$\label{eq:proposition 1} \ \mathcal{U} \ \text{is a topology on } \Sigma_{\mathcal{A}}.$

The topological space $(\Sigma_{\mathcal{A}}, \mathcal{U})$ is **metrizable**, which means that the topology \mathcal{U} is induced by a metric on $\Sigma_{\mathcal{A}}$. For any $\mathbf{s}, \mathbf{t} \in \Sigma_{\mathcal{A}}$ let $d(\mathbf{s}, \mathbf{t}) = 2^{-n}$ if $s_i = t_i$ for $1 \le i \le n$ while $s_{n+1} \ne t_{n+1}$. Also, let $d(\mathbf{s}, \mathbf{t}) = 0$ if $s_i = t_i$ for all $i \ge 1$.

Proposition 2 The function *d* is a metric on Σ_A that induces the topology \mathcal{U} .

Symbolic dynamics

The symbolic dynamics is concerned with the study of some continuous transformations of the topological space Σ_A of infinite words over a finite alphabet A. The most important of them is the **shift** transformation $\sigma : \Sigma_A \to \Sigma_A$ defined by $\sigma(s_0 s_1 s_2 \dots) = (s_1 s_2 \dots)$.

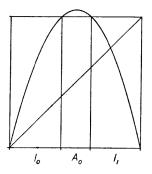
Proposition The shift transformation is continuous.

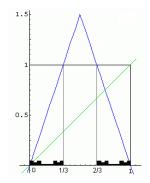
Proof: We have to show that for any open set $W \subset \Sigma_A$ the preimage $\sigma^{-1}(W)$ is also open. The set W is a union of cylinders: $W = \bigcup_{\beta \in B} C_{\beta}$. Since

$$\sigma^{-1}\Big(igcup_{eta\in B} C_eta\Big) = igcup_{eta\in B} \sigma^{-1}(C_eta),$$

it is enough to show that the preimage of any cylinder C_{β} is open. Let $C_{\beta} = C(s_1s_2...s_n)$. Then $\sigma^{-1}(C_{\beta})$ is the union of cylinders $C(s_0s_1s_2...s_n)$, $s_0 \in A$, hence it is open.

Unimodal maps





Continuity of the itinerary map

Let $f : \mathbb{R} \to \mathbb{R}$ be a unimodal map, Λ be the set of all points $x \in \mathbb{R}$ such that $O_f^+(x) \subset [0, 1]$, and $S : \Lambda \to \Sigma_2 = \Sigma_{\{0,1\}}$ be the itinerary map.

Proposition The itinerary map *S* is continuous.

Proof: Since every open subset of Σ_2 is a union of cylinders, it is enough to show that for any cylinder $C = C(s_0 s_1 \dots s_n)$ the preimage $S^{-1}(C)$ is an open subset of Λ , i.e., $S^{-1}(C) = U \cap \Lambda$, where U is an open subset of \mathbb{R} . Clearly, $S^{-1}(C) = I_{s_0s_1...s_n} \cap \Lambda$, where $I_{s_0s_1...s_n} = \{ x \in [0,1] \mid f^k(x) \in I_{s_k}, \ 0 \le k \le n \}.$ We know that $I_{s_0s_1...s_n}$ is a closed interval and the set Λ is covered by 2^{n+1} disjoint closed intervals of the form I_{t_0,t_1,\ldots,t_n} , where each t_i is 0 or 1. It follows that there exists an open

interval U such that $S^{-1}(C) = I_{s_0 s_1 \dots s_n} \cap \Lambda = U \cap \Lambda$.

Interior and boundary

Let X be a topological space. Any open set of the topology containing a point $x \in X$ is called a **neighborhood** of x.

Let *E* be a subset of *X*. A point $x \in E$ is called an **interior point** of *E* if some neighborhood of *x* is contained in *E*. The set of all interior points of *E* is called the **interior** of *E* and denoted int(E).

A point $x \in X$ is called a **boundary point** of the set *E* if each neighborhood of *x* intersets both *E* and $X \setminus E$ (the point *x* need not belong to *E*). The set of all boundary points of *E* is called the **boundary** of *E* and denoted ∂E .

The union $E \cup \partial E$ is called the **closure** of E and denoted \overline{E} . The set E is called **closed** if $\overline{E} = E$. Let E be an arbitrary subset of the topological space X.

Proposition 1 The topological space X is the disjoint union of three sets: $X = int(E) \cup \partial E \cup int(X \setminus E)$.

Proposition 2 The set *E* is closed if and only if the complement $X \setminus E$ is open.

Proposition 3 The interior int(E) is the largest open subset of *E*.

Proposition 4 The closure \overline{E} is the smallest closed set containing *E*.

Definition. We say that a subset $E \subset X$ is **dense** in X if $\overline{E} = X$. An equivalent condition is that E intersects every nonempty open set. We say that E is **dense in a set** $U \subset X$ if the set U is contained in $\overline{E \cap U}$.

Periodic points of the shift

Definition. A point $x \in X$ is a **periodic** point of **period** n of a map $f: X \to X$ if $f^n(x) = x$. The least $n \ge 1$ satisfying this relation is called the **prime period** of x.

Suppose $\mathbf{s} \in \Sigma_A$. Given a natural number *n*, let $\mathbf{s}' = \sigma^n(\mathbf{s})$ and *w* be the beginning of length *n* of \mathbf{s} . Then $\mathbf{s} = w\mathbf{s}'$. It follows that $\sigma^n(\mathbf{s}) = \mathbf{s}$ if and only if $\mathbf{s} = www...$ Similarly, an infinite word \mathbf{t} is an eventually periodic point of the shift if and only if $\mathbf{t} = uwww...$ for some finite words *u* and *w*.

Proposition (i) The number of periodic points of period *n* is k^n , where *k* is the number of elements in the alphabet \mathcal{A} . (ii) Periodic points are dense in $\Sigma_{\mathcal{A}}$.

Proof: By the above the number of periodic points of period n equals the number of finite words of length n, which is k^n . Further, any cylinder C(w) contains a periodic point www...Consequently, any open set $U \subset \Sigma_A$ contains a periodic point.

Dense orbit of the shift

Proposition The shift transformation $\sigma: \Sigma_{\mathcal{A}} \to \Sigma_{\mathcal{A}}$ admits a dense orbit.

Proof: Since open subsets of Σ_A are unions of cylinders, it follows that a set $E \subset \Sigma_A$ is dense if and only if it intersects every cylinder.

The orbit under the shift of an infinite word $\mathbf{s} \in \Sigma_{\mathcal{A}}$ visits a particular cylinder C(w) if and only if the finite word w appears somewhere in \mathbf{s} , that is, $\mathbf{s} = w_0 w \mathbf{s}_0$, where w_0 is a finite word and \mathbf{s}_0 is an infinite word. Therefore the orbit $O_{\sigma}^+(\mathbf{s})$ is dense in $\Sigma_{\mathcal{A}}$ if and only if the infinite word \mathbf{s} contains all finite words over the alphabet \mathcal{A} as subwords.

There are only countably many finite words over \mathcal{A} . We can enumerate them all: w_1, w_2, w_3, \ldots Then an infinite word $\mathbf{s} = w_1 w_2 w_3 \ldots$ has dense orbit.