MATH 614

Dynamical Systems and Chaos

Lecture 8:
 Topological conjugacy.

Topological conjugacy

Suppose $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are transformations of topological spaces.

Definition. We say that a map $\phi: X \rightarrow Y$ is a semi-conjugacy of f with g if ϕ is onto and $\phi \circ f=g \circ \phi$.

The map ϕ is a conjugacy if, additionally, it is invertible. The map ϕ is a topological conjugacy if, additionally, it is a homeomorphism, which means that both ϕ and ϕ^{-1} are continuous. In the latter case, we say that the maps f and g are topologically conjugate. Note that $f=\phi^{-1} g \phi$ and $g=\phi f \phi^{-1}$.

Suppose $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are transformations of topological spaces and $\phi: X \rightarrow Y$ is a semi-conjugacy of f with g.

- ϕ maps any orbit of f onto an orbit of g (both as a sequence and a set). Indeed, $\phi \circ f=g \circ \phi$ implies that $\phi \circ f^{n}=g^{n} \circ \phi$ for all $n \geq 1$.
- If x is a periodic point of f, then $\phi(x)$ is a periodic point of g. In the case ϕ is invertible, the prime period of $\phi(x)$ is the same as that of x.
- If x is an eventually periodic point of f, then $\phi(x)$ is an eventually periodic point of g.
- In the case ϕ is a topological conjugacy, if x is a weakly attracting periodic point of f, then $\phi(x)$ is a weakly attracting periodic point of g. Similarly, if x is a weakly repelling periodic point of f, then $\phi(x)$ is a weakly repelling periodic point of g.

Examples of topological conjugacy

- Linear maps $f(x)=\lambda x$ and $g(x)=\mu x$ on \mathbb{R} are topologically conjugate if $0<\lambda, \mu<1$ or if $\lambda, \mu>1$. If $0<\lambda<1<\mu$, then they are not topologically conjugate.
- The maps $f(x)=x / 2, g(x)=x^{3}$, and $h(x)=x-x^{3}$ are topologically conjugate on $[-1 / 2,1 / 2]$. (For each map 0 is a fixed point and all orbits converge to 0 . However the fixed point is attracting for f, super-attracting for g, and only weakly attracting for h.)
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a unimodal map and Λ be the set of all points $x \in \mathbb{R}$ such that $O_{f}^{+}(x) \subset[0,1]$. If the itinerary map $S: \Lambda \rightarrow \Sigma_{\{0,1\}}$ is one-to-one, then it provides topological conjugacy of the restriction $\left.f\right|_{\wedge}$ of the map f to Λ with the shift $\sigma: \Sigma_{\{0,1\}} \rightarrow \Sigma_{\{0,1\}}$. In general, S is a continuous semi-conjugacy.

Topological conjugacy of linear maps

Consider the family of linear maps $f_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ given by $f_{\lambda}(x)=\lambda x, x \in \mathbb{R}$, where λ is a real parameter.

Let us also define another family of maps $\phi_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ depending on a parameter $\alpha>0$:

$$
\phi_{\alpha}(x)=\left\{\begin{array}{cc}
x^{\alpha} & \text { if } x \geq 0, \\
-|x|^{\alpha} & \text { if } x<0 .
\end{array}\right.
$$

Note that ϕ_{α} is a homeomorphism and $\phi_{\alpha}^{-1}=\phi_{1 / \alpha}$. For any $\lambda, x \geq 0$,

$$
\phi_{\alpha} f_{\lambda} \phi_{\alpha}^{-1}(x)=\phi_{\alpha} f_{\lambda}\left(x^{1 / \alpha}\right)=\phi_{\alpha}\left(\lambda x^{1 / \alpha}\right)=\left(\lambda x^{1 / \alpha}\right)^{\alpha}=\lambda^{\alpha} x .
$$

Since $f_{\lambda}(-x)=-f_{\lambda}(x)$ and $\phi_{\alpha}(-x)=-\phi_{\alpha}(x)$ for all x, the same equality holds for $\lambda \geq 0$ and $x<0$. Similarly, for $\lambda<0$ and any $x \in \mathbb{R}$ we obtain $\phi_{\alpha} f_{\lambda} \phi_{\alpha}^{-1}(x)=-|\lambda|^{\alpha} x$.
Therefore $\phi_{\alpha} f_{\lambda} \phi_{\alpha}^{-1}=f_{\lambda^{\prime}}$, where $\lambda^{\prime}=\phi_{\alpha}(\lambda)$.

Proposition Two linear maps f_{λ} and $f_{\lambda^{\prime}}$ are topologically conjugate if and only if one of the following conditions holds:
(i) $\lambda, \lambda^{\prime}<-1$, (ii) $\lambda=\lambda^{\prime}=-1$, (iii) $-1<\lambda, \lambda^{\prime}<0$,
(iv) $\lambda=\lambda^{\prime}=0$, (v) $0<\lambda, \lambda^{\prime}<1$, (vi) $\lambda=\lambda^{\prime}=1$,
(vii) $\lambda, \lambda^{\prime}>1$.

Proof: If one of the seven conditions holds, then $\lambda^{\prime}=\phi_{\alpha}(\lambda)$ for some $\alpha>0$. It follows that $\phi_{\alpha} f_{\lambda} \phi_{\alpha}^{-1}=f_{\lambda^{\prime}}$, in particular, f_{λ} and $f_{\lambda^{\prime}}$ are topologically conjugate.
If neither condition holds, we need to distinguish f_{λ} from $f_{\lambda^{\prime}}$ by a property invariant under topological conjugacy. First notice that f_{0} is the only linear map that is not one-to-one. Further, f_{1} is the identity map and f_{-1} is distinguished since f_{-1}^{2} is the identity map while f_{-1} is not. The only fixed point 0 of f_{λ} is attracting if $|\lambda|<1$ and repelling if $|\lambda|>1$. Finally, for any $x \neq 0$ the interval with endpoints x and $f_{\lambda}(x)$ contains the fixed point 0 if $\lambda<0$ and does not if $\lambda>0$.

Proposition 1 Suppose $f:[0, a] \rightarrow \mathbb{R}$ and $g:[0, b] \rightarrow \mathbb{R}$ are continuous maps such that $f(0)=g(0)=0, f(x)<x$ for $0<x \leq a$, and $g(x)<x$ for $0<x \leq b$. Then f and g are topologically conjugate.

Let $U=(f(a), a)$. Then U is a wandering domain of the map f, which means that sets $U, f(U), f^{2}(U), \ldots$ are disjoint. Similarly, $V=(g(b), b)$ is a wandering domain of g.

$$
\begin{array}{rlllll}
U & \xrightarrow{f} f(U) & \xrightarrow{f} & f^{2}(U) & \xrightarrow{f} & \ldots \\
\phi \downarrow \\
V & \xrightarrow{g} & g(V) & \xrightarrow{g} & g^{2}(V) & \xrightarrow{g}
\end{array} \ldots
$$

Proposition 2 Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuously differentiable maps such that $f(0)=g(0)=0,0<f^{\prime}(x)<1$ and $0<g^{\prime}(x)<1$ for all $x \in \mathbb{R}$. Then f and g are topologically conjugate.

