MATH 614 Dynamical Systems and Chaos Lecture 8: Topological conjugacy.

Topological conjugacy

Suppose $f: X \to X$ and $g: Y \to Y$ are transformations of topological spaces.

Definition. We say that a map $\phi : X \to Y$ is a **semi-conjugacy** of f with g if ϕ is onto and $\phi \circ f = g \circ \phi$.

The map ϕ is a **conjugacy** if, additionally, it is invertible. The map ϕ is a **topological conjugacy** if, additionally, it is a homeomorphism, which means that both ϕ and ϕ^{-1} are continuous. In the latter case, we say that the maps f and gare **topologically conjugate**. Note that $f = \phi^{-1}g\phi$ and $g = \phi f \phi^{-1}$. Suppose $f: X \to X$ and $g: Y \to Y$ are transformations of topological spaces and $\phi: X \to Y$ is a semi-conjugacy of f with g.

• ϕ maps any orbit of f onto an orbit of g (both as a sequence and a set). Indeed, $\phi \circ f = g \circ \phi$ implies that $\phi \circ f^n = g^n \circ \phi$ for all $n \ge 1$.

• If x is a periodic point of f, then $\phi(x)$ is a periodic point of g. In the case ϕ is invertible, the prime period of $\phi(x)$ is the same as that of x.

• If x is an eventually periodic point of f, then $\phi(x)$ is an eventually periodic point of g.

• In the case ϕ is a topological conjugacy, if x is a weakly attracting periodic point of f, then $\phi(x)$ is a weakly attracting periodic point of g. Similarly, if x is a weakly repelling periodic point of f, then $\phi(x)$ is a weakly repelling periodic point of g.

Examples of topological conjugacy

• Linear maps $f(x) = \lambda x$ and $g(x) = \mu x$ on \mathbb{R} are topologically conjugate if $0 < \lambda, \mu < 1$ or if $\lambda, \mu > 1$. If $0 < \lambda < 1 < \mu$, then they are not topologically conjugate.

• The maps f(x) = x/2, $g(x) = x^3$, and $h(x) = x - x^3$ are topologically conjugate on [-1/2, 1/2]. (For each map 0 is a fixed point and all orbits converge to 0. However the fixed point is attracting for f, super-attracting for g, and only weakly attracting for h.)

• Let $f : \mathbb{R} \to \mathbb{R}$ be a unimodal map and Λ be the set of all points $x \in \mathbb{R}$ such that $O_f^+(x) \subset [0,1]$. If the itinerary map $S : \Lambda \to \Sigma_{\{0,1\}}$ is one-to-one, then it provides topological conjugacy of the restriction $f|_{\Lambda}$ of the map f to Λ with the shift $\sigma : \Sigma_{\{0,1\}} \to \Sigma_{\{0,1\}}$. In general, S is a continuous semi-conjugacy.

Topological conjugacy of linear maps

Consider the family of linear maps $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ given by $f_{\lambda}(x) = \lambda x$, $x \in \mathbb{R}$, where λ is a real parameter.

Let us also define another family of maps $\phi_{\alpha} : \mathbb{R} \to \mathbb{R}$ depending on a parameter $\alpha > 0$:

$$\phi_lpha(x) = \left\{egin{array}{cc} x^lpha & ext{if} \ x \geq 0, \ -|x|^lpha & ext{if} \ x < 0. \end{array}
ight.$$

Note that ϕ_{α} is a homeomorphism and $\,\phi_{\alpha}^{-1}=\phi_{1/\alpha}.\,\,$ For any $\lambda,x\geq 0$,

$$\phi_{\alpha}f_{\lambda}\phi_{\alpha}^{-1}(x) = \phi_{\alpha}f_{\lambda}(x^{1/\alpha}) = \phi_{\alpha}(\lambda x^{1/\alpha}) = (\lambda x^{1/\alpha})^{\alpha} = \lambda^{\alpha}x.$$

Since $f_{\lambda}(-x) = -f_{\lambda}(x)$ and $\phi_{\alpha}(-x) = -\phi_{\alpha}(x)$ for all x, the same equality holds for $\lambda \ge 0$ and x < 0. Similarly, for $\lambda < 0$ and any $x \in \mathbb{R}$ we obtain $\phi_{\alpha}f_{\lambda}\phi_{\alpha}^{-1}(x) = -|\lambda|^{\alpha}x$.

Therefore $\phi_{\alpha}f_{\lambda}\phi_{\alpha}^{-1} = f_{\lambda'}$, where $\lambda' = \phi_{\alpha}(\lambda)$.

Proposition Two linear maps f_{λ} and $f_{\lambda'}$ are topologically conjugate if and only if one of the following conditions holds: (i) $\lambda, \lambda' < -1$, (ii) $\lambda = \lambda' = -1$, (iii) $-1 < \lambda, \lambda' < 0$, (iv) $\lambda = \lambda' = 0$, (v) $0 < \lambda, \lambda' < 1$, (vi) $\lambda = \lambda' = 1$, (vii) $\lambda, \lambda' > 1$.

Proof: If one of the seven conditions holds, then $\lambda' = \phi_{\alpha}(\lambda)$ for some $\alpha > 0$. It follows that $\phi_{\alpha}f_{\lambda}\phi_{\alpha}^{-1} = f_{\lambda'}$, in particular, f_{λ} and $f_{\lambda'}$ are topologically conjugate.

If neither condition holds, we need to distinguish f_{λ} from $f_{\lambda'}$ by a property invariant under topological conjugacy. First notice that f_0 is the only linear map that is not one-to-one. Further, f_1 is the identity map and f_{-1} is distinguished since f_{-1}^2 is the identity map while f_{-1} is not. The only fixed point 0 of f_{λ} is attracting if $|\lambda| < 1$ and repelling if $|\lambda| > 1$. Finally, for any $x \neq 0$ the interval with endpoints x and $f_{\lambda}(x)$ contains the fixed point 0 if $\lambda < 0$ and does not if $\lambda > 0$. **Proposition 1** Suppose $f : [0, a] \to \mathbb{R}$ and $g : [0, b] \to \mathbb{R}$ are continuous maps such that f(0) = g(0) = 0, f(x) < x for $0 < x \le a$, and g(x) < x for $0 < x \le b$. Then f and g are topologically conjugate.

Let U = (f(a), a). Then U is a **wandering domain** of the map f, which means that sets $U, f(U), f^2(U), \ldots$ are disjoint. Similarly, V = (g(b), b) is a wandering domain of g.

Proposition 2 Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are continuously differentiable maps such that f(0) = g(0) = 0, 0 < f'(x) < 1 and 0 < g'(x) < 1 for all $x \in \mathbb{R}$. Then f and g are topologically conjugate.