# MATH 614 Dynamical Systems and Chaos Lecture 9: Compact sets. Definition of chaos.

# **Topological conjugacy**

Suppose  $f: X \to X$  and  $g: Y \to Y$  are transformations of topological spaces.

*Definition.* We say that a map  $\phi : X \to Y$  is a **semi-conjugacy** of f with g if  $\phi$  is onto and  $\phi \circ f = g \circ \phi$ .



The map  $\phi$  is a **conjugacy** if, additionally, it is invertible. The map  $\phi$  is a **topological conjugacy** if, additionally, it is a homeomorphism, which means that both  $\phi$  and  $\phi^{-1}$  are continuous. In the latter case, we say that the maps f and gare **topologically conjugate**. Note that  $f = \phi^{-1}g\phi$  and  $g = \phi f \phi^{-1}$ .

## **Unimodal maps**

Let  $f : \mathbb{R} \to \mathbb{R}$  be a unimodal map,  $\Lambda$  be the set of all points  $x \in \mathbb{R}$  such that  $O_f^+(x) \subset [0, 1]$ , and  $S : \Lambda \to \Sigma_2 = \Sigma_{\{0, 1\}}$  be the itinerary map.



Then S is a continuous semi-conjugacy of  $f|_{\Lambda}$  with the shift. If S is a Cantor set, then S is one-to-one. Is  $S^{-1}$  continuous?

*Example.*  $\phi : [0,1) \cup [2,3] \rightarrow [0,2], \ \phi(x) = x \text{ for } 0 \le x < 1, \ \phi(x) = x - 1 \text{ for } 2 \le x \le 3.$ 

The map  $\phi$  is continuous and invertible, but the inverse is not continuous.

#### **Compact sets**

Definition. A subset E of a topological space X is **compact** if any covering of E by open sets admits a finite subcover. The subset E is **sequentially compact** if any sequence of its elements has a subsequence converging to an element of E.

**Proposition 1** For any set  $E \subset X$ , compactness implies sequential compactness. If the topological space X is metrizable, then the converse is true as well.

**Proposition 2** Any closed subset of a compact set is also compact.

We say that a topological space X is **Hausdorff** if any two distinct elements of X have disjoint neighborhoods. It is easy to show that any metrizable topological space is Hausdorff.

**Proposition 3** In a Hausdorff topological space, every compact set is closed.

**Proposition 4** A subset of the Euclidean space  $\mathbb{R}^n$  is compact if and only if it is closed and bounded.

**Proposition 5** The topological space  $\Sigma_A$  of infinite words over a finite alphabet A is compact.

*Proof:* Since the topological space  $\Sigma_{\mathcal{A}}$  is metrizable, it is enough to prove sequential compactness. Suppose  $\mathbf{s}^{(1)}, \mathbf{s}^{(2)}, \ldots$  is a sequence of infinite words over the alphabet  $\mathcal{A}$ . Note that a subsequence  $\mathbf{s}^{(n_1)}, \mathbf{s}^{(n_2)}, \mathbf{s}^{(n_3)}, \ldots$  converges to some  $\mathbf{s} \in \Sigma_{\mathcal{A}}$  if and only if every finite beginning of  $\mathbf{s}$  is also a beginning of  $\mathbf{s}^{(n_k)}$  for k large enough.

Since  $\mathcal{A}$  is a finite set, the number of finite words over  $\mathcal{A}$  of any prescribed length is finite. It follows by induction that there exists a sequence of letters  $s_1, s_2, \ldots$  such that for any  $k \in \mathbb{N}$  the finite word  $s_1 s_2 \ldots s_k$  occurs as a beginning of  $\mathbf{s}^{(n)}$ for infinitely many *n*'s. Then we choose indices  $n_1 < n_2 < \ldots$ so that  $s_1 s_2 \ldots s_k$  is a beginning of  $\mathbf{s}^{(n_k)}$  for  $k = 1, 2, \ldots$  It follows that  $\mathbf{s}^{(n_k)} \to \mathbf{s} = (s_1 s_2 s_3 \ldots)$  as  $k \to \infty$ .

#### **Compact sets and continuous maps**

**Proposition 6** The image of a compact set under a continuous map is also compact.

**Proposition 7** Any continuous, real-valued function on a compact set attains its maximal and minimal values.

**Proposition 8** Suppose that a continuous map  $f : X \to Y$  is invertible. If the topological space X is compact and Y is Hausdorff, then the inverse map  $f^{-1}$  is continuous as well.

**Proposition 9** Suppose (X, d) and  $(Y, \rho)$  are metric spaces. If X is compact then any continuous function  $f: X \to Y$  is **uniformly continuous**, which means that for any  $\varepsilon > 0$  there exists  $\delta > 0$  such that  $d(x, y) < \delta$  implies  $\rho(f(x), f(y)) < \varepsilon$  for all  $x, y \in X$ .

# **Topological transitivity**

Suppose  $f: X \to X$  is a continuous transformation of a topological space X.

Definition. The map f is **topologically transitive** if for any nonempty open sets  $U, V \subset X$  there exists a natural number n such that  $f^n(U) \cap V \neq \emptyset$ .

$$U \ni x \longmapsto f(x) \longmapsto f^2(x) \longmapsto \cdots \longmapsto f^n(x) \in V$$

Topological transitivity means that the dynamical system f is, in a sense, indecomposable.

**Proposition 1** Topological transitivity is preserved under topological conjugacy.

**Proposition 2** If the map f has a dense orbit, then it is topologically transitive provided X is Hausdorff and has no isolated points.

**Proposition 3** If X is a metrizable compact space, then any topologically transitive transformation of X has a dense orbit.

## Separation of orbits

Suppose  $f: X \to X$  is a continuous transformation of a metric space (X, d).

Definition. We say that f has **sensitive dependence on** initial conditions if there is  $\delta > 0$  such that, for any  $x \in X$ and a neighborhood U of x, there exist  $y \in U$  and  $n \ge 0$ satisfying  $d(f^n(y), f^n(x)) > \delta$ .

We say that the map f is **expansive** if there is  $\delta > 0$  such that, for any  $x, y \in X$ ,  $x \neq y$ , there exists  $n \ge 0$  satisfying  $d(f^n(y), f^n(x)) > \delta$ .

**Proposition** If X is compact, then changing the metric d to another metric that induces the same topology cannot affect sensitive dependence on i.c. and expansiveness of the map f.

**Corollary** For continuous transformations of compact metric spaces, sensitive dependence on initial conditions and expansiveness are preserved under topological conjugacy.

## **Definition of chaos**

Suppose  $f : X \to X$  is a continuous transformation of a metric space (X, d).

Definition. We say that the map f is **chaotic** if

- *f* has sensitive dependence on initial conditions;
- *f* is topologically transitive;
- periodic points of f are dense in X.

The three conditions provide the dynamical system f with unpredictability, indecomposability, and an element of regularity (recurrence).

### **Examples of chaotic systems**

• The shift  $\sigma: \Sigma_{\mathcal{A}} \to \Sigma_{\mathcal{A}}$  is chaotic.

• Let  $f : \mathbb{R} \to \mathbb{R}$  be a unimodal map and  $\Lambda$  be the set of all points  $x \in \mathbb{R}$  such that  $O_f^+(x) \subset [0, 1]$ . If  $\Lambda$  is a Cantor set then the restriction  $f|_{\Lambda}$  of the map f to  $\Lambda$  is chaotic (otherwise it is not).

Recall that  $\Lambda$  is a Cantor set if and only if the itinerary map  $S : \Lambda \to \Sigma_{\{0,1\}}$  is one-to-one, in which case S is a topological conjugacy of  $f|_{\Lambda}$  with the shift on  $\Sigma_{\{0,1\}}$ .