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Dynamical Systems and Chaos

Lecture 10:
Chaos.

Structural stability.



Definition of chaos

Suppose f : X → X is a continuous transformation
of a metric space (X , d).

Definition. We say that the map f is chaotic if

• f has sensitive dependence on initial conditions;

• f is topologically transitive;

• periodic points of f are dense in X .

Theorem For continuous transformations of

compact metric spaces, chaoticity is preserved under
topological conjugacy.



Separation of orbits

Suppose f : X → X is a continuous transformation of a
metric space (X , d).

Definition. We say that f has sensitive dependence on
initial conditions if there is δ > 0 such that, for any x ∈ X

and a neighborhood U of x , there exist y ∈ U and n ≥ 0
satisfying d

(

f n(y ), f n(x)
)

> δ.

We say that the map f is expansive if there is δ > 0 such
that, for any x , y ∈ X , x 6= y , there exists n ≥ 0 satisfying
d
(

f n(y ), f n(x)
)

> δ.

Proposition If X is compact, then changing the metric d to
another metric that induces the same topology cannot affect
sensitive dependence on i.c. and expansiveness of the map f .

Corollary For continuous transformations of compact metric
spaces, sensitive dependence on initial conditions and
expansiveness are preserved under topological conjugacy.



Topological transitivity

Suppose f : X → X is a continuous transformation of a
topological space X .

Definition. The map f is topologically transitive if for any
nonempty open sets U,V ⊂ X there exists a natural number
n such that f n(U) ∩ V 6= ∅.

U ∋ x 7−→ f (x) 7−→ f 2(x) 7−→ · · · 7−→ f n(x) ∈ V

Proposition 1 Topological transitivity is preserved under
topological conjugacy.

Proposition 2 If the map f has a dense orbit, then it is
topologically transitive provided X is Hausdorff and has no
isolated points.

Proposition 3 If X is a metrizable compact space, then any
topologically transitive transformation of X has a dense orbit.



The shift

Suppose A is a finite alphabet consisting of at least 2 letters.

Theorem The shift σ : ΣA → ΣA is chaotic.

We already know that periodic points of the shift are dense in
ΣA. Also, the shift admits a dense orbit and hence is
topologically transitive. It remains to check sensitive
dependence on initial conditions.

Lemma The shift is expansive.

Idea of the proof: If s, t ∈ ΣA are distinct infinite words,
then for some n ≥ 0 the shifted words σn(s) and σn(t) differ
in the first letter.

Finally, expansiveness implies sensitive dependence on initial
conditions unless the phase space has isolated points.



The subshift

Recall that a subshift is the restriction of the shift
to a closed invariant subset.

Clearly, the subshift is expansive as well, but it can

have isolated points. Besides, the subshift may or
may not admit a dense orbit and periodic points

may or may not be dense in the phase space.

All three conditions of chaoticity can be effectively
checked for subshifts of finite type.



Unimodal maps



Let f : R → R be a unimodal map, Λ be the set of all points
x ∈ R such that O+

f
(x) ⊂ [0, 1], and S : Λ → Σ{0,1} be the

itinerary map. We know that S is a continuous
semi-conjugacy of the restriction f |Λ with the shift.

Theorem 1 The following conditions are equivalent:
(i) Λ is a Cantor set;
(ii) the itinerary map S is one-to-one;
(iii) the restriction f |Λ is topologically conjugate to the shift;
(iv) the restriction f |Λ has sensitive dependence on initial
conditions;
(v) the restriction f |Λ is expansive;
(vi) the restriction f |Λ admits a dense orbit;
(vii) periodic points of f are dense in Λ;
(viii) the restriction f |Λ is chaotic.

Theorem 2 Suppose f is continuously differentiable and
|(f n)′(x)| > 1 for some n ≥ 1 and all x ∈ Λ. Then the
restriction f |Λ is expansive.



Structural stability

Informally, a dynamical system is structurally
stable if its structure is preserved under small
perturbations. To make this notion formal, one has

to specify what it means that the “structure is
preserved” and what is considered a “small

perturbation”.

In the context of topological dynamics, structural
stability usually means that the perturbed system is

topologically conjugate to the original one.

The description of small perturbations varies for
different dynamical systems and so there are various

kinds of structural stability.



• Structural stability within a parametric family.

Suppose fp : Xp → Xp is a dynamical system depending on a
parameter vector p ∈ P, where P ⊂ R

k . Given p0 ∈ P, we
say that fp0 is structurally stable within the family {fp} if
there exists ε > 0 such that for any p ∈ P satisfying
|p− p0| < ε the system fp is topologically conjugate to fp0.

• C r -structural stability for one-dimensional systems.

Let J be an interval of the real line. For any integer r ≥ 0,
let C r (J) denote the set of r times continuously differentiable
functions f : J → R. The C r distance between functions
f , g ∈ C r(J) is given by

dr(f , g)=sup
x∈J

(

|f (x)−g(x)|, |f ′(x)−g ′(x)|, . . . , |f (r)(x)−g (r)(x)|
)

.

We say that a map f ∈ C r (J) is C r -structurally stable if
there exists ε > 0 such that whenever dr(f , g) < ε, it follows
that g is topologically conjugate to f .



Small perturbation

In the first figure, the function g is a C 0-small
perturbation of f , but not a C 1-small one. In the
second figure, the functions f and g are C 1-close

but not C 2-close. In the third figure, f and g are
C 2-close.



Examples of structural stability

• Linear map fλ : R → R, fλ(x) = λx .

The map fλ is structurally stable within the family {fλ} if and
only if λ /∈ {−1, 0, 1}. Besides, it is C 1-structurally stable for
the same values of λ.



Examples of structural stability

• Logistic map Fµ : R → R, Fµ(x) = µx(1− x).

The map Fµ is structurally stable within the family {Fµ} for
µ > 4. Besides, it is C 2-structurally stable for µ > 4 (but
not C 1-structurally stable).


