MATH 614

Dynamical Systems and Chaos

Lecture 11:

Sharkovskii's theorem.

Period set

Suppose J is an interval of the real line and $f: J \rightarrow J$ is a continuous map. Let $\mathcal{P}(f)$ be the set of all natural numbers n for which the map f admits a periodic point of prime period n (or, equivalently, a periodic orbit that consists of n points).

Question. Which subsets of \mathbb{N} can occur as $\mathcal{P}(f)$?
Examples. - $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1$.
$\mathcal{P}(f)=\emptyset$.

- $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x$.
$\mathcal{P}(f)=\{1\}$.
- $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=-x$.
$\mathcal{P}(f)=\{1,2\}$.
- $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\mu x(1-x)$, where $\mu>4$.

The map f has an invariant set Λ such that the restriction $\left.f\right|_{\wedge}$ is conjugate to the shift on $\Sigma_{\{0,1\}}$. Since the shift admits periodic points of all prime periods, so does $f: \mathcal{P}(f)=\mathbb{N}$.

Sharkovskii's ordering

The Sharkovskii ordering is the following strict linear ordering of the natural numbers:

$$
\begin{aligned}
& \ldots \triangleright 2^{k} \triangleright \ldots \triangleright 2^{3} \triangleright 2^{2} \triangleright 2 \triangleright 1 \text {. }
\end{aligned}
$$

To be precise, for any integers $k_{1}, k_{2} \geq 0$ and odd natural numbers p_{1}, p_{2} we let $2^{k_{1}} p_{1} \triangleright 2^{k_{2}} p_{2}$ if and only if one of the following conditions holds:

- $k_{1}=k_{2}$ and $1<p_{1}<p_{2}$;
- $p_{1}, p_{2}>1$ and $k_{1}<k_{2}$;
- $p_{1}>1$ and $p_{2}=1$;
- $p_{1}=p_{2}=1$ and $k_{1}>k_{2}$.

Sharkovskii's Theorem

Theorem 1 (Sharkovskii) Suppose $f: J \rightarrow J$ is a continuous map of an interval $J \subset \mathbb{R}$. If f admits a periodic point of prime period n and $n \triangleright m$ for some $m \in \mathbb{N}$, then f admits a periodic point of prime period m as well.

Definition. A subset $E \subset \mathbb{N}$ is called a tail of Sharkovskii's ordering if $n \in E$ and $n \triangleright m$ implies $m \in E$ for all $m, n \in \mathbb{N}$.
Sharkovskii's Theorem states that the period set $\mathcal{P}(f)$ is such a tail. For any $n \in \mathbb{N}$ the set $E_{n}=\{n\} \cup\{m \in \mathbb{N} \mid n \triangleright m\}$ is a tail. The only tails that cannot be represented this way are $\left\{2^{n} \mid n \geq 0\right\}$ and the empty set.

Theorem 2 For any tail E of Sharkovskii's ordering there exists a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathcal{P}(f)=E$.
Remark. For maps of an interval $J \subset \mathbb{R}$, Theorem 2 holds with one exception: if J is bounded and closed, then $\mathcal{P}(f) \neq \emptyset$.

Suppose $f: J \rightarrow J$ is a continuous map of an interval $J \subset \mathbb{R}$. Given two closed bounded intervals $I_{1}, I_{2} \subset J$, we write $I_{1} \rightarrow I_{2}$ if $f\left(I_{1}\right) \supset I_{2}$ (i.e., if I_{1} covers I_{2} under the action of f).

Lemma 1 If $I \rightarrow I$, then the interval I contains a fixed point of the map f.

Proof: Let $I=[a, b]$. Since $f(I) \supset I$, there exist $a_{0}, b_{0} \in I$ such that $f\left(a_{0}\right)=a, f\left(b_{0}\right)=b$. Then a continuous function $g(x)=f(x)-x$ satisfies $g\left(a_{0}\right)=a-a_{0} \leq 0$ and $g\left(b_{0}\right)=b-b_{0} \geq 0$. By the Intermediate Value Theorem, we have $g(c)=0$ for some c between a_{0} and b_{0}. Then $c \in I$ and $f(c)=c$.

Lemma 2 If the map f has a periodic orbit, then it has a fixed point.

Proof: Suppose x is a periodic point of f of prime period n. In the case $n=1$, we are done. Otherwise let $x_{1}, x_{2}, \ldots, x_{n}$ be the list of all points of the orbit $O_{f}^{+}(x)$ ordered so that $x_{1}<x_{2}<\cdots<x_{n}$. Note that $f\left(x_{i}\right) \neq x_{i}$ for all i. In particular, $f\left(x_{1}\right)>x_{1}$ while $f\left(x_{n}\right)<x_{n}$.
Let j be the largest index satisfying $f\left(x_{j}\right)>x_{j}$. Then $j<n$, $f\left(x_{j}\right) \geq x_{j+1}$, and $f\left(x_{j+1}\right) \leq x_{j}$. The Intermediate Value Theorem implies that $\left[x_{j}, x_{j+1}\right] \rightarrow\left[x_{j}, x_{j+1}\right]$. By Lemma 1, the map f has a fixed point in the interval $\left[x_{j}, x_{j+1}\right]$.

Lemma 3 If $I \rightarrow I^{\prime}$, then there exists a closed interval
$I_{0} \subset I$ such that f maps I_{0} onto I^{\prime}.
Proof: Let $I^{\prime}=[a, b]$. Then $A=I \cap f^{-1}(a)$ and $B=I \cap f^{-1}(b)$ are nonempty compact sets. It follows that the distance function $d(x, y)=|y-x|$ attains its minimum on the set $A \times B$ at some point $\left(x_{0}, y_{0}\right)$. Note that $x_{0} \neq y_{0}$ since $A \cap B=\emptyset$. Let I_{0} denote the closed interval with endpoints x_{0} and y_{0}. Then $I_{0} \subset I$, the endpoints of I_{0} are mapped to a and b, and no interior point of I_{0} is mapped to a or b. The Intermediate Value Theorem implies that $f\left(I_{0}\right)=I^{\prime}$.

Lemma 4 If $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n} \rightarrow I_{1}$, then there exists a fixed point x of f^{n} such that $x \in I_{1}, f(x) \in I_{2}, \ldots, f^{n-1}(x) \in I_{n}$.
Proof: It follows by induction from Lemma 3 that there exist closed intervals $I_{1}^{\prime} \subset I_{1}, I_{2}^{\prime} \subset I_{2}, \ldots, I_{n}^{\prime} \subset I_{n}$ such that f maps I_{i}^{\prime} onto I_{i+1}^{\prime} for $1 \leq i \leq n-1$ and also maps I_{n}^{\prime} onto I_{1}. As a consequence, f^{n} maps I_{1}^{\prime} onto I_{1}. Lemma 1 implies that f^{n} has a fixed point $x \in I_{1}^{\prime}$. By construction, $f^{i}(x) \in I_{i}^{\prime} \subset I_{i}$ for $0 \leq i \leq n-1$.

Proposition 5 If the map f has a periodic point of prime period 3, then it has periodic points of any prime period.

Proof: Suppose x_{1}, x_{2}, x_{3} are points forming a periodic orbit of f, ordered so that $x_{1}<x_{2}<x_{3}$. We have that either $f\left(x_{1}\right)=x_{2}, f\left(x_{2}\right)=x_{3}, f\left(x_{3}\right)=x_{1}$, or else $f\left(x_{1}\right)=x_{3}$, $f\left(x_{2}\right)=x_{1}, f\left(x_{3}\right)=x_{2}$. In the first case, let $I_{1}=\left[x_{2}, x_{3}\right]$ and $I_{2}=\left[x_{1}, x_{2}\right]$. Otherwise we let $I_{1}=\left[x_{1}, x_{2}\right]$ and $I_{2}=\left[x_{2}, x_{3}\right]$. Then $\circlearrowright I_{1} \rightleftarrows I_{2}$, i.e., $I_{1} \rightarrow I_{2} \rightarrow I_{1}$ and $I_{1} \rightarrow I_{1}$.
The map f has a periodic point of prime period 3. By Lemma 2, it also has a fixed point. To find a periodic point of prime period n, where $n=2$ or $n \geq 4$, we notice that

$$
I_{2} \rightarrow \underbrace{I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}}_{n-1 \text { times }} \rightarrow I_{2} .
$$

By Lemma 4, there exists $x \in I_{2}$ such that $f^{n}(x)=x$ and $f^{i}(x) \in I_{1}$ for $1 \leq i \leq n-1$. If $x \notin I_{1}$, we obtain that n is the prime period of x. Otherwise $x=x_{2}$, which leads to a contradiction.

