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Dynamical Systems and Chaos

Lecture 11:
Sharkovskii’s theorem.



Period set

Suppose J is an interval of the real line and f : J → J is a
continuous map. Let P(f ) be the set of all natural numbers
n for which the map f admits a periodic point of prime period
n (or, equivalently, a periodic orbit that consists of n points).

Question. Which subsets of N can occur as P(f )?

Examples. • f : R → R, f (x) = x + 1.
P(f ) = ∅.

• f : R → R, f (x) = x .
P(f ) = {1}.

• f : R → R, f (x) = −x .
P(f ) = {1, 2}.

• f : R → R, f (x) = µx(1− x), where µ > 4.
The map f has an invariant set Λ such that the restriction f |Λ
is conjugate to the shift on Σ{0,1}. Since the shift admits
periodic points of all prime periods, so does f : P(f ) = N.



Sharkovskii’s ordering

The Sharkovskii ordering is the following strict linear
ordering of the natural numbers:

3 B 5 B 7 B 9 B . . .
B 2 · 3 B 2 · 5 B 2 · 7 B 2 · 9 B . . .
B 22 · 3 B 22 · 5 B 22 · 7 B 22 · 9 B . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . B 2k B . . . B 23 B 22 B 2 B 1.

To be precise, for any integers k1, k2 ≥ 0 and odd natural
numbers p1, p2 we let 2k1p1 B 2k2p2 if and only if one of the
following conditions holds:

• k1 = k2 and 1 < p1 < p2;

• p1, p2 > 1 and k1 < k2;

• p1 > 1 and p2 = 1;

• p1 = p2 = 1 and k1 > k2.



Sharkovskii’s Theorem

Theorem 1 (Sharkovskii) Suppose f : J → J is a
continuous map of an interval J ⊂ R. If f admits a periodic
point of prime period n and n Bm for some m ∈ N, then f

admits a periodic point of prime period m as well.

Definition. A subset E ⊂ N is called a tail of Sharkovskii’s
ordering if n ∈ E and nBm implies m ∈ E for all m, n ∈ N.

Sharkovskii’s Theorem states that the period set P(f ) is such
a tail. For any n ∈ N the set En = {n} ∪ {m ∈ N | n Bm}
is a tail. The only tails that cannot be represented this way
are {2n | n ≥ 0} and the empty set.

Theorem 2 For any tail E of Sharkovskii’s ordering there
exists a continuous map f : R → R such that P(f ) = E .

Remark. For maps of an interval J ⊂ R, Theorem 2 holds
with one exception: if J is bounded and closed, then P(f ) 6= ∅.



Suppose f : J → J is a continuous map of an

interval J ⊂ R. Given two closed bounded
intervals I1, I2 ⊂ J , we write I1 → I2 if f (I1) ⊃ I2
(i.e., if I1 covers I2 under the action of f ).

Lemma 1 If I → I , then the interval I contains a

fixed point of the map f .

Proof: Let I = [a, b]. Since f (I ) ⊃ I , there exist a0, b0 ∈ I

such that f (a0) = a, f (b0) = b. Then a continuous function
g(x) = f (x)− x satisfies g(a0) = a − a0 ≤ 0 and
g(b0) = b − b0 ≥ 0. By the Intermediate Value Theorem, we
have g(c) = 0 for some c between a0 and b0. Then c ∈ I

and f (c) = c.



Lemma 2 If the map f has a periodic orbit, then

it has a fixed point.

Proof: Suppose x is a periodic point of f of prime period n.
In the case n = 1, we are done. Otherwise let x1, x2, . . . , xn
be the list of all points of the orbit O+

f (x) ordered so that
x1 < x2 < · · · < xn. Note that f (xi) 6= xi for all i . In
particular, f (x1) > x1 while f (xn) < xn.

Let j be the largest index satisfying f (xj) > xj . Then j < n,
f (xj) ≥ xj+1, and f (xj+1) ≤ xj . The Intermediate Value
Theorem implies that [xj , xj+1] → [xj , xj+1]. By Lemma 1, the
map f has a fixed point in the interval [xj , xj+1].



Lemma 3 If I → I ′, then there exists a closed interval
I0 ⊂ I such that f maps I0 onto I ′.

Proof: Let I ′ = [a, b]. Then A = I ∩ f −1(a) and
B = I ∩ f −1(b) are nonempty compact sets. It follows that
the distance function d(x , y ) = |y − x | attains its minimum
on the set A× B at some point (x0, y0). Note that x0 6= y0
since A ∩ B = ∅. Let I0 denote the closed interval with
endpoints x0 and y0. Then I0 ⊂ I , the endpoints of I0 are
mapped to a and b, and no interior point of I0 is mapped to a

or b. The Intermediate Value Theorem implies that f (I0) = I ′.

Lemma 4 If I1 → I2 → · · · → In → I1, then there exists a
fixed point x of f n such that x ∈ I1, f (x)∈ I2, . . . , f

n−1(x)∈ In.

Proof: It follows by induction from Lemma 3 that there exist
closed intervals I ′1 ⊂ I1, I ′2 ⊂ I2, . . . , I ′n ⊂ In such that f maps
I ′i onto I ′i+1 for 1 ≤ i ≤ n−1 and also maps I ′n onto I1. As a
consequence, f n maps I ′1 onto I1. Lemma 1 implies that f n

has a fixed point x ∈ I ′1. By construction, f i(x) ∈ I ′i ⊂ Ii for
0 ≤ i ≤ n−1.



Proposition 5 If the map f has a periodic point of prime
period 3, then it has periodic points of any prime period.

Proof: Suppose x1, x2, x3 are points forming a periodic orbit
of f , ordered so that x1 < x2 < x3. We have that either
f (x1) = x2, f (x2) = x3, f (x3) = x1, or else f (x1) = x3,
f (x2) = x1, f (x3) = x2. In the first case, let I1 = [x2, x3] and
I2 = [x1, x2]. Otherwise we let I1 = [x1, x2] and I2 = [x2, x3].
Then � I1 � I2, i.e., I1 → I2 → I1 and I1 → I1.

The map f has a periodic point of prime period 3. By Lemma
2, it also has a fixed point. To find a periodic point of prime
period n, where n = 2 or n ≥ 4, we notice that

I2 → I1 → I1 → · · · → I1
︸ ︷︷ ︸

n−1 times

→ I2.

By Lemma 4, there exists x ∈ I2 such that f n(x) = x and
f i(x) ∈ I1 for 1 ≤ i ≤ n−1. If x /∈ I1, we obtain that n is
the prime period of x . Otherwise x = x2, which leads to a
contradiction.


