MATH 614 Dynamical Systems and Chaos Lecture 11: Sharkovskii's theorem.

Period set

Suppose J is an interval of the real line and $f: J \to J$ is a continuous map. Let $\mathcal{P}(f)$ be the set of all natural numbers n for which the map f admits a periodic point of prime period n (or, equivalently, a periodic orbit that consists of n points).

Question. Which subsets of \mathbb{N} can occur as $\mathcal{P}(f)$?

Examples. • $f : \mathbb{R} \to \mathbb{R}, f(x) = x + 1.$ $\mathcal{P}(f) = \emptyset.$ • $f : \mathbb{R} \to \mathbb{R}, f(x) = x.$ $\mathcal{P}(f) = \{1\}.$ • $f : \mathbb{R} \to \mathbb{R}, f(x) = -x.$ $\mathcal{P}(f) = \{1, 2\}.$ • $f: \mathbb{R} \to \mathbb{R}, f(x) = \mu x(1-x)$, where $\mu > 4$. The map f has an invariant set Λ such that the restriction $f|_{\Lambda}$ is conjugate to the shift on $\Sigma_{\{0,1\}}$. Since the shift admits periodic points of all prime periods, so does $f: \mathcal{P}(f) = \mathbb{N}$.

Sharkovskii's ordering

The **Sharkovskii ordering** is the following strict linear ordering of the natural numbers:

To be precise, for any integers $k_1, k_2 \ge 0$ and odd natural numbers p_1, p_2 we let $2^{k_1}p_1 > 2^{k_2}p_2$ if and only if one of the following conditions holds:

- $k_1 = k_2$ and $1 < p_1 < p_2$;
- $p_1, p_2 > 1$ and $k_1 < k_2;$
- $p_1 > 1$ and $p_2 = 1$;
- $p_1 = p_2 = 1$ and $k_1 > k_2$.

Sharkovskii's Theorem

Theorem 1 (Sharkovskii) Suppose $f : J \rightarrow J$ is a continuous map of an interval $J \subset \mathbb{R}$. If f admits a periodic point of prime period n and $n \triangleright m$ for some $m \in \mathbb{N}$, then f admits a periodic point of prime period m as well.

Definition. A subset $E \subset \mathbb{N}$ is called a **tail** of Sharkovskii's ordering if $n \in E$ and $n \triangleright m$ implies $m \in E$ for all $m, n \in \mathbb{N}$. Sharkovskii's Theorem states that the period set $\mathcal{P}(f)$ is such a tail. For any $n \in \mathbb{N}$ the set $E_n = \{n\} \cup \{m \in \mathbb{N} \mid n \triangleright m\}$ is a tail. The only tails that cannot be represented this way are $\{2^n \mid n \ge 0\}$ and the empty set.

Theorem 2 For any tail E of Sharkovskii's ordering there exists a continuous map $f : \mathbb{R} \to \mathbb{R}$ such that $\mathcal{P}(f) = E$.

Remark. For maps of an interval $J \subset \mathbb{R}$, Theorem 2 holds with one exception: if J is bounded and closed, then $\mathcal{P}(f) \neq \emptyset$.

Suppose $f : J \to J$ is a continuous map of an interval $J \subset \mathbb{R}$. Given two closed bounded intervals $l_1, l_2 \subset J$, we write $\boxed{l_1 \to l_2}$ if $f(l_1) \supset l_2$ (i.e., if l_1 covers l_2 under the action of f).

Lemma 1 If $I \rightarrow I$, then the interval I contains a fixed point of the map f.

Proof: Let I = [a, b]. Since $f(I) \supset I$, there exist $a_0, b_0 \in I$ such that $f(a_0) = a$, $f(b_0) = b$. Then a continuous function g(x) = f(x) - x satisfies $g(a_0) = a - a_0 \leq 0$ and $g(b_0) = b - b_0 \geq 0$. By the Intermediate Value Theorem, we have g(c) = 0 for some c between a_0 and b_0 . Then $c \in I$ and f(c) = c.

Lemma 2 If the map *f* has a periodic orbit, then it has a fixed point.

Proof: Suppose x is a periodic point of f of prime period n. In the case n = 1, we are done. Otherwise let x_1, x_2, \ldots, x_n be the list of all points of the orbit $O_f^+(x)$ ordered so that $x_1 < x_2 < \cdots < x_n$. Note that $f(x_i) \neq x_i$ for all i. In particular, $f(x_1) > x_1$ while $f(x_n) < x_n$.

Let j be the largest index satisfying $f(x_j) > x_j$. Then j < n, $f(x_j) \ge x_{j+1}$, and $f(x_{j+1}) \le x_j$. The Intermediate Value Theorem implies that $[x_j, x_{j+1}] \rightarrow [x_j, x_{j+1}]$. By Lemma 1, the map f has a fixed point in the interval $[x_j, x_{j+1}]$.

Lemma 3 If $I \rightarrow I'$, then there exists a closed interval $I_0 \subset I$ such that f maps I_0 onto I'.

Proof: Let I' = [a, b]. Then $A = I \cap f^{-1}(a)$ and $B = I \cap f^{-1}(b)$ are nonempty compact sets. It follows that the distance function d(x, y) = |y - x| attains its minimum on the set $A \times B$ at some point (x_0, y_0) . Note that $x_0 \neq y_0$ since $A \cap B = \emptyset$. Let I_0 denote the closed interval with endpoints x_0 and y_0 . Then $I_0 \subset I$, the endpoints of I_0 are mapped to a and b, and no interior point of I_0 is mapped to a or b. The Intermediate Value Theorem implies that $f(I_0) = I'$.

Lemma 4 If $I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_n \rightarrow I_1$, then there exists a fixed point x of f^n such that $x \in I_1$, $f(x) \in I_2$, ..., $f^{n-1}(x) \in I_n$.

Proof: It follows by induction from Lemma 3 that there exist closed intervals $l'_1 \subset l_1$, $l'_2 \subset l_2$, ..., $l'_n \subset l_n$ such that f maps l'_i onto l'_{i+1} for $1 \le i \le n-1$ and also maps l'_n onto l_1 . As a consequence, f^n maps l'_1 onto l_1 . Lemma 1 implies that f^n has a fixed point $x \in l'_1$. By construction, $f^i(x) \in l'_i \subset l_i$ for $0 \le i \le n-1$.

Proposition 5 If the map *f* has a periodic point of prime period 3, then it has periodic points of any prime period.

Proof: Suppose x_1, x_2, x_3 are points forming a periodic orbit of f, ordered so that $x_1 < x_2 < x_3$. We have that either $f(x_1) = x_2$, $f(x_2) = x_3$, $f(x_3) = x_1$, or else $f(x_1) = x_3$, $f(x_2) = x_1$, $f(x_3) = x_2$. In the first case, let $l_1 = [x_2, x_3]$ and $l_2 = [x_1, x_2]$. Otherwise we let $l_1 = [x_1, x_2]$ and $l_2 = [x_2, x_3]$. Then $\bigcirc l_1 \rightleftharpoons l_2$, i.e., $l_1 \rightarrow l_2 \rightarrow l_1$ and $l_1 \rightarrow l_1$.

The map f has a periodic point of prime period 3. By Lemma 2, it also has a fixed point. To find a periodic point of prime period n, where n = 2 or $n \ge 4$, we notice that

$$l_2 \rightarrow \underbrace{l_1 \rightarrow l_1 \rightarrow \cdots \rightarrow l_1}_{n-1 \text{ times}} \rightarrow l_2.$$

By Lemma 4, there exists $x \in I_2$ such that $f^n(x) = x$ and $f^i(x) \in I_1$ for $1 \le i \le n-1$. If $x \notin I_1$, we obtain that *n* is the prime period of *x*. Otherwise $x = x_2$, which leads to a contradiction.