Lecture 15:

MATH 614

Dynamical Systems and Chaos

Maps of the circle.

Circle S^1 .

(multi-valued function)

Circle
$$S^1$$
.

 $S^1 = \{(x,y) \in \mathbb{R}^2 : |x|^2 + |y|^2 = 1\}$
 $S^1 = \{z \in \mathbb{C} : |z| = 1\}$
 $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$
 $\mathbb{T}^1 = \mathbb{R}/2\pi\mathbb{Z}$
 $\alpha : S^1 \to [0, 2\pi),$
angular coordinate
 $\alpha : S^1 \to \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}$

$$\phi: \mathbb{R} o \mathcal{S}^1$$
,

 $\phi: \mathbb{R} \to \mathcal{S}$, $\phi(x) = (\cos x, \sin x), \quad S^1 \subset \mathbb{R}^2.$

$$\phi(x) = (\cos x, \sin x), \quad S^1 \subset \mathbb{R}^2.$$

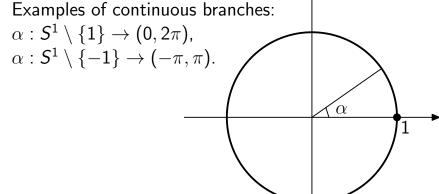
 $\phi(x) = e^{ix} = \cos x + i \sin x, \quad S^1 \subset \mathbb{C}.$

 ϕ : wrapping map $\phi(x + 2\pi k) = \phi(x), k \in \mathbb{Z}.$

$$\alpha \in \mathbb{R}$$
 is an angular coordinate of $x \in S^1$ if and only if $\phi(\alpha) = x$.

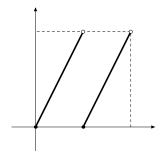
For any arc $\gamma \subset S^1$ there exists a continuous branch $\alpha: \gamma \to \mathbb{R}$ of the angular coordinate.

If $\alpha_1 : \gamma \to \mathbb{R}$ and $\alpha_2 : \gamma \to \mathbb{R}$ are two continuous branches then $\alpha_1 - \alpha_2$ is a constant $2\pi k$, $k \in \mathbb{Z}$.



 $f: S^1 \to S^1$, continuous map

Example. $D: z \mapsto z^2$ (doubling map) in angular coordinates: $\alpha \mapsto 2\alpha \pmod{2\pi}$.



The doubling map: smooth, 2-to-1, no critical points.

Theorem The doubling map is chaotic.

Orientation-preserving and orientation-reversing

The real line \mathbb{R} has two orientations.

For maps of an interval: orientation-preserving = monotone increasing, orientation-reversing = monotone decreasing.

The circle S^1 also has two orientations (clockwise and counterclockwise).

Given a map $f: S^1 \to S^1$, we say that a map $F: \mathbb{R} \to \mathbb{R}$ is a **lift** of f if $f \circ \phi = \phi \circ F$, where $\phi: \mathbb{R} \to S^1$ is the wrapping map. Any continuous map $f: S^1 \to S^1$ admits a continuous lift F. The lift satisfies $F(x+2\pi) - F(x) = 2\pi k$ for some $k \in \mathbb{Z}$ and all $x \in \mathbb{R}$. If F_0 is another continuous lift of f, then $F - F_0$ is a constant function.

A continuous map $f: S^1 \to S^1$ is **orientation-preserving** (resp., **orientation-reversing**) if so is the continuous lift of f.

Maps of the circle

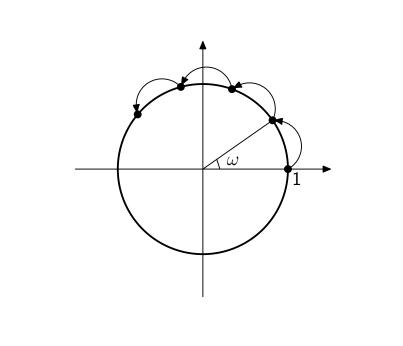
 $f: S^1 \to S^1$, f an orientation-preserving homeomorphism.

Rotations of the circle

 $R_{\omega}: S^1 \to S^1$, rotation by angle $\omega \in \mathbb{R}$.

 $R_{\omega}(z) = e^{i\omega}z$, complex coordinate z;

 $R_{\omega}(\alpha) = \alpha + \omega \pmod{2\pi}$, angular coordinate α .



Rotations of the circle

 $R_{\omega}: S^1 \to S^1$, rotation by angle $\omega \in \mathbb{R}$. $R_{\omega}(z) = e^{i\omega}z$, complex coordinate z; $R_{\omega}(\alpha) = \alpha + \omega \pmod{2\pi}$, angular coordinate α .

Each R_{ω} is an orientation-preserving diffeomorphism; each R_{ω} is an isometry; each R_{ω} preserves Lebesgue measure on S^1 .

 R_{ω} is a one-parameter family of maps. R_{ω} is a **transformation group**.

Indeed, $R_{\omega_1}R_{\omega_2}=R_{\omega_1+\omega_2}$, $R_{\omega}^{-1}=R_{-\omega}$. It follows that $R_{\omega}^n=R_{n\omega}$, $n=1,2,\ldots$. Also, $R_0=\mathrm{id}$ and $R_{\omega+2\pi k}=R_{\omega}$, $k\in\mathbb{Z}$. An angle ω is called **rational** if $\omega = r\pi$, $r \in \mathbb{Q}$. Otherwise ω is an **irrational** angle.

If ω is a rational angle then R_{ω} is a periodic map. All points of S^1 are periodic of the same period.

If $\omega = 2\pi m/n$, where m and n are coprime integers, n > 0, then the period of R_{ω} is n.

If ω is irrational then R_{ω} has no periodic points. If ω is irrational then R_{ω} is **minimal**: each orbit is dense in S^1 .

If ω is irrational then each orbit of R_{ω} is **uniformly** distributed in S^1 .

Minimality

Theorem (Jacobi) Suppose ω is an irrational angle. Then the rotation R_{ω} is minimal: all orbits of R_{ω} are dense in S^1 .

Proof: Take an arc $\gamma \subset S^1$. Then $R_\omega^n(\gamma)$, $n \geq 1$, is an arc of the same length as γ . Since S^1 has finite length, the arcs $\gamma, R_\omega(\gamma), R_\omega^2(\gamma), \ldots$ cannot all be disjoint. Hence $R_\omega^n(\gamma) \cap R_\omega^m(\gamma) \neq \emptyset$ for some $0 \leq n < m$. But $R_\omega^n(\gamma) \cap R_\omega^m(\gamma) = R_\omega^n(\gamma \cap R_\omega^{m-n}(\gamma))$ so $\gamma \cap R_\omega^{m-n}(\gamma) \neq \emptyset$.

Thus for any $\varepsilon>0$ there exists $k\geq 1$ such that $R_\omega^k=R_{k\omega}$ is the rotation by an angle ω' , $|\omega'|<\varepsilon$. Note that $\omega'\neq 0$ since ω is an irrational angle. Pick any $x\in S^1$. Let $n=\lceil 2\pi/|\omega'|\rceil$. Then points $x,R_{k\omega}(x),R_{k\omega}^2(x),\ldots,R_{k\omega}^n(x)$ divide S^1 into arcs of length $<\varepsilon$.

Uniform distribution

Let $T: S^1 \to S^1$ be a homeomorphism and $x \in S^1$. Consider the orbit $x, T(x), T^2(x), \ldots, T^n(x), \ldots$

Let $\gamma \subset S^1$ be an arc. By $N(x, \gamma; n)$ denote the number of integers $k \in \{0, 1, ..., n-1\}$ such that $T^k(x) \in \gamma$. The orbit of x is **uniformly distributed** in S^1 if

$$\lim_{n\to\infty}\frac{N(x,\gamma_1;n)}{N(x,\gamma_2;n)}=1$$

for any two arcs γ_1 and γ_2 of the same length.

An equivalent condition:

$$\lim_{n\to\infty}\frac{N(x,\gamma_1;n)}{N(x,\gamma_2;n)}=\frac{length(\gamma_1)}{length(\gamma_2)}$$

for any arcs γ_1 and γ_2 .

Another equivalent condition:

$$\lim_{n\to\infty} \frac{N(x,\gamma;n)}{n} = \frac{length(\gamma)}{2\pi}$$

for any arc γ .

Theorem (Kronecker-Weyl) Suppose ω is an irrational angle. Then all orbits of the rotation R_{ω} are uniformly distributed in S^1 .

Fractional linear transformations of S^1

A fractional linear transformation of the complex plane $\mathbb C$ is given by

$$f(z) = \frac{az+b}{cz+d},$$
 $a, b, c, d \in \mathbb{C}.$

How can we tell if $f(S^1) = S^1$? This happens in the case

$$f(z)=e^{i\psi}\frac{z-z_0}{\overline{z}_0z-1},$$

where $|z_0| \neq 1$ and $\psi \in \mathbb{R}$. Indeed, if $z \in S^1$ then $z = e^{i\alpha}$, $z_0 = re^{i\beta}$, $z - z_0 = e^{i\alpha} - re^{i\beta} = e^{i\alpha}(1 - re^{i\beta}e^{-i\alpha})$, $\bar{z}_0z - 1 = re^{-i\beta}e^{i\alpha} - 1$ so that $f(z) \in S^1$.

Fractional linear transformations of S^1

$$S^1 = \{ z \in \mathbb{C} : |z| = 1 \},$$

 $f : S^1 \to S^1,$

$$f(z) = -e^{i\omega}\frac{z-z_0}{\overline{z}_0z-1},$$

where $z \in \mathbb{C}$, $|z_0| \neq 1$ and $\omega \in \mathbb{R}$.

Fractional linear transformations of S^1 form a **group**. Rotations of the circle form a **subgroup** $(z_0 = 0)$.

f is orientation-preserving if $|z_0| < 1$ and orientation-reversing if $|z_0| > 1$.

$$rac{az+b}{cz+d}\mapsto \left(egin{array}{cc} a&b\c&d \end{array}
ight).$$

 $f(z) = \frac{az+b}{cz+d}, \quad g(z) = \frac{a'z+b'}{c'z+d'},$

 $f(g(z)) = \frac{a\frac{a'z+b'}{c'z+d'}+b}{c\frac{a'z+b'}{c'z+d'}+d} = \frac{(aa'+bc')z+ab'+bd'}{(ca'+dc')z+cb'+dd'},$

Composition of fractional linear transformations corresponds to matrix multiplication.

$$f(z)=-e^{i\omega}rac{z-z_0}{ar{z}_0z-1}, \ -e^{i\omega/2}\left(egin{array}{cc} e^{i\omega/2} & -z_0e^{i\omega/2} \ -ar{z}_0e^{-i\omega/2} & e^{-i\omega/2} \end{array}
ight).$$

$$\det = 1 - |z_0|^2$$
, $\operatorname{Tr} = e^{i\omega/2} + e^{-i\omega/2} = 2\cos(\omega/2)$.

Characteristic equation:

$$\lambda^2 - 2\cos(\omega/2)\lambda + 1 - |z_0|^2 = 0.$$

Discriminant:

$$D = \cos^2(\omega/2) - 1 + |z_0|^2 = |z_0|^2 - \sin^2(\omega/2).$$

If D < 0 then f is **elliptic**.

If D = 0 then f is parabolic. If D > 0 then f is hyperbolic. **Theorem (i)** If f is elliptic then f has no fixed points and is topologically conjugate to a rotation. **(ii)** If f is parabolic then f has a unique fixed point, which is neutral. Besides, the fixed point is weakly semi-attracting and semi-repelling.

(iii) If f is hyperbolic then f has two fixed points; one is attracting, the other is repelling.

Example. Given $\omega \in (0, \pi)$, the one-parameter family

$$f_r(z) = e^{i\omega} \frac{z-r}{1-rz}, \quad 0 \le r < 1$$

undergoes a saddle-node bifurcation at $r = r_0 = |\sin(\omega/2)|$.