MATH 614

Dynamical Systems and Chaos

Lecture 16: Rotation number. The standard family.

Maps of the circle

$T: S^{1} \rightarrow S^{1}$,
T an orientation-preserving homeomorphism.

Suppose $T: S^{1} \rightarrow S^{1}$ is an orientation-preserving homeomorphism.
Is T topologically conjugate to a rotation R_{ω} ?
Assume this is so, then how can we find ω ?
For any $x \in S^{1}$ let $\omega(T, x)$ denote the length of the shortest arc that goes from x to $T(x)$ in the counterclockwise direction.

If T is a rotation then $\omega(T, x)$ is a constant.

Rotation number

Consider the average

$$
A_{n}(T, x)=\frac{1}{n} \sum_{k=0}^{n-1} \omega\left(T, T^{k}(x)\right)
$$

Theorem The limit

$$
\lim _{n \rightarrow \infty} A_{n}(T, x)
$$

exists for any $x \in S^{1}$ and does not depend on x.
The rotation number of T is

$$
\rho(T)=\frac{1}{2 \pi} \lim _{n \rightarrow \infty} A_{n}(T, x)
$$

Proposition If $\rho(T)=0$, then T has a fixed point.

Proof: Suppose T has no fixed points. Then $0<\omega(T, x)<2 \pi$ for any $x \in S^{1}$. Since $\omega(T, x)$ is a continuous function of x, there exists $\varepsilon>0$ such that $\varepsilon \leq \omega(T, x) \leq 2 \pi-\varepsilon$ for any $x \in S^{1}$. Then $\varepsilon \leq A_{n}(T, x) \leq 2 \pi-\varepsilon$ for all $x \in S^{1}$ and $n=1,2, \ldots$ It follows that

$$
\frac{\varepsilon}{2 \pi} \leq \rho(T) \leq 1-\frac{\varepsilon}{2 \pi}
$$

Properties of the rotation number

- For any $T, 0 \leq \rho(T)<1$.
- $\rho\left(R_{\omega}\right)=\omega /(2 \pi)(\bmod 1)$, where R_{ω} is the rotation by ω.
- If g is an orientation-preserving homeomorphism of S^{1}, then $\rho\left(g^{-1} T g\right)=\rho(T)$.
- If g is an orientation-reversing homeomorphism of S^{1}, then $\rho\left(g^{-1} T g\right)=-\rho(T)(\bmod 1)$.
- If T_{1} and T_{2} are topologically conjugate, then $\rho\left(T_{1}\right)= \pm \rho\left(T_{2}\right)(\bmod 1)$.

Properties of the rotation number

- Rotations $R_{\omega_{1}}$ and $R_{\omega_{1}}$ are topologically conjugate if and only if $\omega_{1}= \pm \omega_{2}(\bmod 2 \pi)$.
- $\rho\left(T^{n}\right)=n \rho(T)(\bmod 1)$.
- $\rho(T)=0$ if and only if T has a fixed point.
- $\rho(T)$ is rational if and only if T has a periodic point.
- If T has a periodic point of prime period n, then $\rho(T)=k / n$, a reduced fraction.

Theorem (Denjoy) If T is C^{2} smooth and the rotation number $\rho(T)$ is irrational, then T is topologically conjugate to a rotation of the circle.

Example (Denjoy). There exists C^{1} smooth diffeomorphism T of S^{1} such that $\rho(T)$ is irrational but T is not minimal.

Proposition Suppose $f: S^{1} \rightarrow S^{1}$ is an orientation-preserving homeomorphism. Let $\varepsilon>0$. Then there exists $\delta>0$ such that for any homeomorphism $g: S^{1} \rightarrow S^{1}$ with

$$
\sup _{x \in S^{1}} \operatorname{dist}(f(x), g(x))<\delta
$$

we have $|\rho(f)-\rho(g)|<\varepsilon(\bmod 1)$.
Corollary Suppose f_{λ} is a one-parameter family of orientation-preserving homeomorphisms of S^{1}. If f_{λ} depends continuously on λ then $\rho\left(f_{\lambda}\right)$ is a continuous $(\bmod 1)$ function of λ.

The standard family

The standard (or canonical) family of maps

$$
f_{\omega, \varepsilon}: S^{1} \rightarrow S^{1}, \quad \omega \in \mathbb{R}, \varepsilon \geq 0
$$

In the angular coordinate α :

$$
f_{\omega, \varepsilon}(\alpha)=\alpha+\omega+\varepsilon \sin \alpha .
$$

If $\varepsilon=0$ then $f_{\omega, \varepsilon}=R_{\omega}$ is a rotation.
For $0 \leq \varepsilon<1, f_{\omega, \varepsilon}$ is a diffeomorphism.
If $\varepsilon=1$ then $f_{\omega, \varepsilon}$ is only a homeomorphism.
If $\varepsilon>1$ then $f_{\omega, \varepsilon}$ is not one-to-one.

The rotation number $\rho\left(f_{\omega, \varepsilon}\right)$:

- depends continuously $(\bmod 1)$ on ω and ε;
- is a 2π-periodic function of ω for any ε;
- $f_{0, \varepsilon}$ has rotation number 0 ;
- $\rho\left(f_{\omega, \varepsilon}\right)$ is a non-decreasing function of
$\omega \in(0,2 \pi)$ for any fixed ε;
- $\lim _{\omega \rightarrow 2 \pi} \rho\left(f_{\omega, \varepsilon}\right)=1$.

Hence the map $r_{\varepsilon}:[0,1) \rightarrow[0,1)$ given by $x \mapsto \rho\left(f_{2 \pi x, \varepsilon}\right)$ is continuous, non-decreasing, and onto.
r_{0} is the identity.

Proposition Suppose $\rho\left(f_{\omega_{0}, \varepsilon}\right)$ is rational. If $\varepsilon>0$ then

$$
\rho\left(f_{\omega, \varepsilon}\right)=\rho\left(f_{\omega_{0}, \varepsilon}\right)
$$

for all $\omega>\omega_{0}$ close enough to ω_{0} or for all $\omega<\omega_{0}$ close enough to ω_{0} (or both).

Theorem For any irrational number $0<\rho_{0}<1$ and any $0<\varepsilon<1$, there is exactly one $\omega \in(0,2 \pi)$ such that $\rho\left(f_{\omega, \varepsilon}\right)=\rho_{0}$.

Let $0<\varepsilon<1$ and $0 \leq \rho_{0}<1$. Then $r_{\varepsilon}^{-1}\left(\rho_{0}\right)$ is a point if ρ_{0} is irrational and $r_{\varepsilon}^{-1}\left(\rho_{0}\right)$ is a nontrivial interval if ρ_{0} is rational.
r_{ε} is a Cantor function, which means that on the complement of a Cantor set, $r_{\varepsilon}^{\prime}=0$.
The graph of a Cantor function is called the "devil's staircase".

Cantor function

The bifurcation diagram for the standard family

The bifurcation diagram for the standard family

We plot the regions in the (ε, ω)-plane where $\rho\left(f_{\omega, \varepsilon}\right)$ is a fixed rational number. Each region is a "tongue" that flares from a point $\varepsilon=0, \omega=m / n$, $m, n \in \mathbb{Z}$. None of these tongues can overlap when $\varepsilon<1$.

Consider the tongue corresponding to $\rho=0$. It describes fixed points of the standard maps.
This tongue is the angle $|\omega| \leq \varepsilon$.
What happens when we fix ε and vary ω ?

If $\omega=-\varepsilon$ then $f_{\omega, \varepsilon}(\alpha)=\alpha+\omega+\varepsilon \sin \alpha$ has a unique fixed point $\pi / 2$. As we increase ω, it splits into two fixed points, one in $(-\pi / 2, \pi / 2)$, the other in $(\pi / 2,3 \pi / 2)$. They run around the circle in opposite directions. Finally, at $\omega=\varepsilon$ the two points coalesce into a single fixed point $-\pi / 2$.
The unique fixed points for $\omega= \pm \varepsilon$ are neutral. As for two fixed points for $|\omega|<\varepsilon$, one is attracting while the other is repelling (which one?).
So the family $f_{\omega, \varepsilon}$ (ε fixed) enjoys a saddle-node bifurcation two times. Notice that these are not pure saddle-node bifurcations since the bifurcation points are not isolated (they are "half-isolated").

