MATH 614

Dynamical Systems and Chaos

Lecture 17b:
 Dynamics of linear maps.

Linear transformations

Any linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is represented as multiplication of an n-dimensional column vector by a $n \times n$ matrix: $L(\mathbf{x})=A \mathbf{x}$, where $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$.

Dynamics of linear transformations corresponding to particular matrices is determined by eigenvalues and the Jordan canonical form.

$$
A=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Rotation by 90°

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Rotation by 45°

$$
A=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Reflection about the vertical axis

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Reflection about the line $x-y=0$

$$
A=\left(\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right)
$$

Horizontal shear

$$
A=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Scaling

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right)
$$

Squeeze

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Vertical projection on the horizontal axis

$$
A=\left(\begin{array}{rr}
0 & -1 \\
0 & 1
\end{array}\right)
$$

Horizontal projection on the line $x+y=0$

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Identity

Phase portraits of linear maps

$$
L_{1}(\mathbf{x})=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \mathbf{x} \quad L_{2}(\mathbf{x})=\left(\begin{array}{cc}
2 & 0 \\
0 & -1 / 2
\end{array}\right) \mathbf{x}
$$

Phase portraits of linear maps

$$
L_{3}(\mathbf{x})=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 3
\end{array}\right) \mathbf{x} \quad L_{4}(\mathbf{x})=\left(\begin{array}{cc}
0 & -1 / 2 \\
1 / 2 & 0
\end{array}\right) \mathbf{x}
$$

Phase portraits of linear maps

$$
L_{5}(x)=\left(\begin{array}{ccc}
0 & -1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) x
$$

Phase portraits of linear maps

$$
L(\mathbf{x})=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \mathbf{x}
$$

Stable and unstable subspaces

Proposition 1 Suppose that all eigenvalues of a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are less than 1 in absolute value. Then $L^{n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Proposition 2 Suppose that all eigenvalues of a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are greater than 1 in absolute value. Then $L^{-n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Given a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, let W^{s} denote the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $L^{n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$. In the case L is invertible, let W^{u} denote the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ such that $L^{-n}(\mathbf{x}) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$.

Proposition $3 W^{s}$ and W^{u} are vector subspaces of \mathbb{R}^{n} that are transversal: $W^{s} \cap W^{U}=\{\mathbf{0}\}$.

Definition. W^{s} is called the stable subspace of the linear map $L . W^{u}$ is called the unstable subspace of L.

