
MATH 614

Dynamical Systems and Chaos

Lecture 17b:

Dynamics of linear maps.



Linear transformations

Any linear mapping L : Rn → R
n is represented as

multiplication of an n-dimensional column vector by
a n×n matrix: L(x) = Ax, where A = (aij)1≤i ,j≤n.

Dynamics of linear transformations corresponding to

particular matrices is determined by eigenvalues and
the Jordan canonical form.
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Horizontal projection
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Phase portraits of linear maps
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Phase portraits of linear maps
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Phase portraits of linear maps
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Phase portraits of linear maps
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Stable and unstable subspaces

Proposition 1 Suppose that all eigenvalues of a linear map
L : Rn → R

n are less than 1 in absolute value. Then
Ln(x) → 0 as n → ∞ for all x ∈ R

n.

Proposition 2 Suppose that all eigenvalues of a linear map
L : Rn → R

n are greater than 1 in absolute value. Then
L−n(x) → 0 as n → ∞ for all x ∈ R

n.

Given a linear map L : Rn → R
n, let W s denote the set of all

vectors x ∈ R
n such that Ln(x) → 0 as n → ∞. In the case

L is invertible, let W u denote the set of all vectors x ∈ R
n

such that L−n(x) → 0 as n → ∞.

Proposition 3 W s and W u are vector subspaces of Rn that
are transversal: W s ∩W u = {0}.

Definition. W s is called the stable subspace of the linear
map L. W u is called the unstable subspace of L.


