MATH 614 Dynamical Systems and Chaos Lecture 17b: Dynamics of linear maps.

Any linear mapping $L : \mathbb{R}^n \to \mathbb{R}^n$ is represented as multiplication of an *n*-dimensional column vector by a $n \times n$ matrix: $L(\mathbf{x}) = A\mathbf{x}$, where $A = (a_{ij})_{1 \le i,j \le n}$.

Dynamics of linear transformations corresponding to particular matrices is determined by eigenvalues and the Jordan canonical form.

 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Reflection about the vertical axis

 $A = \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}$

Horizontal shear

 $A = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Identity

$$L_5(\mathbf{x}) = egin{pmatrix} 0 & -1/2 & 0 \ 1/2 & 0 & 0 \ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$$

Stable and unstable subspaces

Proposition 1 Suppose that all eigenvalues of a linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ are less than 1 in absolute value. Then $L^n(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$ for all $\mathbf{x} \in \mathbb{R}^n$.

Proposition 2 Suppose that all eigenvalues of a linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ are greater than 1 in absolute value. Then $L^{-n}(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$ for all $\mathbf{x} \in \mathbb{R}^n$.

Given a linear map $L: \mathbb{R}^n \to \mathbb{R}^n$, let W^s denote the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $L^n(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$. In the case L is invertible, let W^u denote the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that $L^{-n}(\mathbf{x}) \to \mathbf{0}$ as $n \to \infty$.

Proposition 3 W^s and W^u are vector subspaces of \mathbb{R}^n that are transversal: $W^s \cap W^u = \{\mathbf{0}\}.$

Definition. W^s is called the **stable subspace** of the linear map L. W^u is called the **unstable subspace** of L.