MATH 614

Dynamical Systems and Chaos

Lecture 19:
 The horseshoe map. Invertible symbolic dynamics.

The Smale horseshoe map

Stephen Smale, 1960

The Smale horseshoe map

The Smale horseshoe map

The map F is contracting on D_{1} and $F\left(D_{1}\right) \subset D_{1}$. It follows that there is a unique fixed point $p \in D_{1}$ and the orbit of any point in D_{1} converges to p. Moreover, any orbit that leaves the square S converges to p.

Itineraries

$F^{-1}(S)=V_{0} \cup V_{1}, \quad F\left(V_{0}\right)=H_{0}, \quad F\left(V_{1}\right)=H_{1}$.
Let Λ_{1} be the set of all points in S whose orbits stay in S.
We have $S=I_{H} \times I_{V}$ and $\Lambda_{1}=\bar{\Xi}_{1} \times I_{V}$, where $\bar{\Xi}_{1}$ is a Cantor set. Since $\Lambda_{1} \subset V_{0} \cup V_{1}$, we can define the itinerary map $S_{+}: \Lambda_{1} \rightarrow \Sigma_{\{0,1\}}$. This map is continuous and onto. For any infinite word $\mathbf{s}=\left(s_{0} s_{1} s_{2} \ldots\right)$, the preimage $S_{+}^{-1}(\mathbf{s})$ is a vertical segment $\{x\} \times I_{V}$.

Itineraries

$F^{-1}(S)=V_{0} \cup V_{1}, \quad F\left(V_{0}\right)=H_{0}, \quad F\left(V_{1}\right)=H_{1}$.
Let Λ_{2} be the set of all points in S with infinite backward orbit. We have $S=I_{H} \times I_{V}$ and $\Lambda_{2}=I_{H} \times \bar{\Xi}_{2}$, where $\bar{\Xi}_{2}$ is a Cantor set. Since $\Lambda_{2} \subset H_{0} \cup H_{1}$, we can define another itinerary map $S_{-}: \Lambda_{2} \rightarrow \Sigma_{\{0,1\}}$ for the inverse map F^{-1}. This itinerary map is also continuous and onto. For any infinite word $\mathbf{t}=\left(t_{0} t_{1} t_{2} \ldots\right)$, the preimage $S_{-}^{-1}(\mathbf{t})$ is a horizontal segment $I_{H} \times\{y\}$.

Itineraries

$F^{-1}(S)=V_{0} \cup V_{1}, \quad F\left(V_{0}\right)=H_{0}, \quad F\left(V_{1}\right)=H_{1}$.
Finally, let $\Lambda=\Lambda_{1} \cap \Lambda_{2}$. We have $\Lambda=\bar{\Xi}_{1} \times \bar{\Xi}_{2}$.
For any $\mathbf{p} \in \Lambda$ we can define the full itinerary $S_{ \pm}(\mathbf{p})=\left(\ldots t_{2} t_{1} t_{0} \cdot s_{0} s_{1} s_{2} \ldots\right)$, where $S_{+}(\mathbf{p})=\left(s_{0} s_{1} s_{2} \ldots\right)$ and $S_{-}(\mathbf{p})=\left(t_{0} t_{1} t_{2} \ldots\right)$. Then

$$
S_{ \pm}(F(\mathbf{p}))=\left(\ldots t_{2} t_{1} t_{0} s_{0} \cdot s_{1} s_{2} \ldots\right)
$$

Indeed, $S_{ \pm}(\mathbf{p})$ is the itinerary of the full orbit of \mathbf{p} under the map F relative to the sets V_{0} and V_{1}.

Bi-infinite words

Given a finite set \mathcal{A} with at least 2 elements (an alphabet), we denote by $\Sigma_{\mathcal{A}}^{ \pm}$the set of all bi-infinite words over \mathcal{A}, i.e., bi-infinite sequences $\mathbf{s}=\left(\ldots s_{-2} s_{-1} \cdot s_{0} s_{1} s_{2} \ldots\right), s_{i} \in \mathcal{A}$. Any bi-infinite word in $\Sigma_{\mathcal{A}}^{ \pm}$comes with the standard numbering of letters determined by the decimal point.
For any finite words w_{-}, w_{+}over the alphabet \mathcal{A}, we define a cylinder $C\left(w_{-}, w_{+}\right)$to be the set of all bi-infinite words $\mathbf{s} \in \Sigma_{\mathcal{A}}^{ \pm}$of the form ($\left.\ldots s_{-2} s_{-1} w_{-} . w_{+} s_{1} s_{2} \ldots\right), s_{i} \in \mathcal{A}$. The topology on $\Sigma_{\mathcal{A}}^{ \pm}$is defined so that open sets are unions of cylinders. Two bi-infinite words are considered close in this topology if they have a long common part around the decimal point.
The topological space $\Sigma_{\mathcal{A}}^{ \pm}$is metrizable. A compatible metric is defined as follows. For any $\mathbf{s}, \mathbf{t} \in \Sigma_{\mathcal{A}}^{ \pm}$we let $d(\mathbf{s}, \mathbf{t})=2^{-n}$ if $s_{i}=t_{i}$ for $0 \leq|i|<n$ while $s_{n} \neq t_{n}$ or $s_{-n} \neq t_{-n}$. Also, let $d(\mathbf{s}, \mathbf{t})=0$ if $\mathbf{s}=\mathbf{t}$.

Invertible symbolic dynamics

The shift transformation $\sigma: \Sigma_{\mathcal{A}}^{ \pm} \rightarrow \Sigma_{\mathcal{A}}^{ \pm}$is defined by $\sigma\left(\ldots s_{-2} s_{-1} \cdot s_{0} s_{1} s_{2} \ldots\right)=\left(\ldots s_{-2} s_{-1} s_{0} \cdot s_{1} s_{2} \ldots\right)$. It is also called the two-sided shift while the shift on $\Sigma_{\mathcal{A}}$ is called the one-sided shift.

Proposition 1 The two-sided shift is a homeomorphism.
Proposition 2 Periodic points of σ are dense in $\Sigma_{\mathcal{A}}^{ \pm}$.
Proposition 3 The two-sided shift admits a dense orbit.
Proposition 4 The two-sided shift is not expansive.
Proposition 5 The two-sided shift is chaotic.
Proposition 6 The itinerary map $S_{ \pm}: \Lambda \rightarrow \Sigma_{\mathcal{A}}^{ \pm}$of the horseshoe map is a homeomorphism.

Proposition 7 The topological space $\Sigma_{\mathcal{A}}^{ \pm}$is homeomorphic to $\Sigma_{\mathcal{A}}$ and to $\Sigma_{\mathcal{A}} \times \Sigma_{\mathcal{A}}$.

