MATH 614 Dynamical Systems and Chaos Lecture 21: Markov partitions. Solenoid.

General symbolic dynamics

Suppose $f: X \to X$ is a dynamical system. Given a partition of the set X into disjoint subsets X_{α} , $\alpha \in \mathcal{A}$ indexed by elements of a finite set \mathcal{A} , we can define the (forward) **itinerary map** $S: X \to \Sigma_{\mathcal{A}}$ so that $S(x) = (s_0 s_1 s_2 \dots)$, where $f^n(x) \in X_{s_n}$ for all $n \ge 0$.

If the map f is invertible, then we can define the full itinerary map $S:X\to \Sigma^\pm_{\mathcal{A}}.$

In the case f is continuous, the itinerary map is continuous if the sets X_{α} are **clopen** (i.e., both closed and open). If, additionally, X is compact, then the itinerary map provides a semi-conjugacy of f with a subshift.

In the case a partition into clopen sets is not possible, we can choose closed sets X_{α} that do not cover X completely or closed sets that partially overlap.

Examples of stable and unstable sets

• Hyperbolic toral automorphism $L_A : \mathbb{T}^2 \to \mathbb{T}^2$.

Stable and unstable sets of L_A are images of the corresponding sets of the linear map $L(\mathbf{x}) = A\mathbf{x}$, $\mathbf{x} \in \mathbb{R}^2$, under the natural projection $\pi : \mathbb{R}^2 \to \mathbb{T}^2$. These sets are dense in the torus \mathbb{T}^2 .

Markov partitions

Definition. Given a metric space M and a homeomorphism $f: M \to M$, a **rectangle** is a closed set $R \subset M$ such that for any $\mathbf{p}, \mathbf{q} \in R$, the intersection $W^s(\mathbf{p}) \cap W^u(\mathbf{q}) \cap R$ is not empty. A **Markov partition** of M is a partition of M into rectangles $\{R_1, \ldots, R_m\}$ with disjoint interiors such that whenever $\mathbf{p} \in R_i$ and $f(\mathbf{p}) \in R_j$, we have $f(W^u(\mathbf{p}) \cap R_i) \supset W^u(f(\mathbf{p})) \cap R_j$ and $f(W^s(\mathbf{p}) \cap R_i) \subset W^s(f(\mathbf{p})) \cap R_j$.

Markov partitions

Definition. Given a metric space M and a homeomorphism $f: M \to M$, a **rectangle** is a closed set $R \subset M$ such that for any $\mathbf{p}, \mathbf{q} \in R$, the intersection $W^s(\mathbf{p}) \cap W^u(\mathbf{q}) \cap R$ is not empty. A **Markov partition** of M is a partition of M into rectangles $\{R_1, \ldots, R_m\}$ with disjoint interiors such that whenever $\mathbf{p} \in R_i$ and $f(\mathbf{p}) \in R_j$, we have $f(W^u(\mathbf{p}) \cap R_i) \supset W^u(f(\mathbf{p})) \cap R_j$ and $f(W^s(\mathbf{p}) \cap R_i) \subset W^s(f(\mathbf{p})) \cap R_j$.

The conditions ensure that $f^n(R_i) \cap R_j \neq \emptyset$ and $f^m(R_j) \cap R_k \neq \emptyset$ implies $f^{n+m}(R_i) \cap R_k \neq \emptyset$ so that the corresponding symbolic dynamics is a topological Markov chain.

Note that all points in $W^{s}(\mathbf{p}) \cap R_{i}$ have the same forward itinerary while all points in $W^{u}(\mathbf{p}) \cap R_{i}$ have the same backward itinerary.

Example

Cat map

The **cat map** is a hyperbolic toral automorphism $L_A: \mathbb{T}^2 \to \mathbb{T}^2$ given by the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

Markov partition for the cat map

Markov partition for the cat map

Adler, Weiss 1967

Solid torus

Let S^1 be the circle and B^2 be the unit disk in \mathbb{R}^2 : $B^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

The Cartesian product $D = S^1 \times B^2$ is called the **solid torus**. It is a 3-dimensional manifold with boundary that can be realized as a closed subset in \mathbb{R}^3 . The boundary ∂D is the torus.

Let $D = S^1 \times B^2$ be the solid torus. We represent the circle S^1 as \mathbb{R}/\mathbb{Z} . For any $\theta \in S^1$ and $p \in B^2$ let $F(\theta, p) = (2\theta, ap + b\phi(\theta)),$ where $\phi: S^1 \to \partial B^2$ is defined by

$$\phi(\theta) = (\cos(2\pi\theta), \sin(2\pi\theta))$$

and constants a, b are chosen so that 0 < a < b and a + b < 1. Then $F : D \to D$ is a smooth, one-to-one map. The image F(D) is contained strictly inside of D.

The solid torus $D = S^1 \times B^2$ is foliated by discs $B(\theta) = \{\theta\} \times B^2$. The image $F(B(\theta))$ is a smaller disc inside of $B(2\theta)$.

It follows that all points in a disc $B(\theta)$ are forward asymptotic. In particular, $B(\theta)$ is contained in the stable set $W^{s}(\mathbf{x})$ of any point $\mathbf{x} \in B(\theta)$. In fact, $W^{s}(\mathbf{x}) = \bigcup_{n,k \in \mathbb{Z}} B(\theta + n/2^{k})$.

Solenoid

The sets $D, F(D), F^2(D), \ldots$ are closed and nested. The intersection $\Lambda = \bigcap_{n \ge 0} F^n(D)$ is called the **solenoid**.

The solenoid Λ is a compact set invariant under the map F. The restriction of F to Λ is an invertible map. The intersection of Λ with any disc $B(\theta)$ is a Cantor set. Moreover, Λ is locally the Cartesian product of a Cantor set and an arc.