MATH 614 Dynamical Systems and Chaos Lecture 22: Solenoid (continued). Inverse limit space extension.

Solid torus

Let S^1 be the circle and B^2 be the unit disk in \mathbb{R}^2 : $B^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

The Cartesian product $D = S^1 \times B^2$ is called the **solid torus**. It is a 3-dimensional manifold with boundary that can be realized as a closed subset in \mathbb{R}^3 . The boundary ∂D is the torus.

Let $D = S^1 \times B^2$ be the solid torus. We represent the circle S^1 as \mathbb{R}/\mathbb{Z} . For any $\theta \in S^1$ and $p \in B^2$ let $F(\theta, p) = (2\theta, ap + b\phi(\theta)),$ where $\phi: S^1 \to \partial B^2$ is defined by

$$\phi(\theta) = (\cos(2\pi\theta), \sin(2\pi\theta))$$

and constants a, b are chosen so that 0 < a < b and a + b < 1. Then $F : D \to D$ is a smooth, one-to-one map. The image F(D) is contained strictly inside of D.

The solid torus $D = S^1 \times B^2$ is foliated by discs $B(\theta) = \{\theta\} \times B^2$. The image $F(B(\theta))$ is a smaller disc inside of $B(2\theta)$.

It follows that all points in a disc $B(\theta)$ are forward asymptotic. In particular, $B(\theta)$ is contained in the stable set $W^{s}(\mathbf{x})$ of any point $\mathbf{x} \in B(\theta)$. In fact, $W^{s}(\mathbf{x}) = \bigcup_{n,k\in\mathbb{Z}} B(\theta + n/2^{k})$.

Solenoid

The sets $D, F(D), F^2(D), \ldots$ are closed and nested. The intersection $\Lambda = \bigcap_{n \ge 0} F^n(D)$ is called the **solenoid**.

The solenoid Λ is a compact set invariant under the map F. The restriction of F to Λ is an invertible map. The intersection of Λ with any disc $B(\theta)$ is a Cantor set. Moreover, Λ is locally the Cartesian product of a Cantor set and an arc.

Properties of the solenoid

Theorem 1 The restriction $F|_{\Lambda}$ is chaotic, i.e.,

- it has sensitive dependence on initial conditions,
- it is topologically transitive,
- periodic points are dense in Λ .

Theorem 2 The solenoid Λ is an attractor of the map F. Namely, $dist(F^n(\mathbf{x}), \Lambda) \to 0$ as $n \to \infty$ for all $\mathbf{x} \in D$.

Theorem 3 For any point $\mathbf{x} \in \Lambda$, the unstable set $W^u(\mathbf{x})$ is a smooth curve that is dense in Λ .

Theorem 4 The solenoid is connected, but not locally connected or arcwise connected.

Periodic points

The solid torus $D = S^1 \times B^2$ is foliated by discs $B(\theta) = \{\theta\} \times B^2$. The image $F(B(\theta))$ is a smaller disc inside of $B(2\theta)$.

If θ is a periodic point of the doubling map, then $B(\theta)$ contains a unique periodic point of F (of the same period).

Inverse limit space extension

Suppose $f : X \to X$ is a dynamical system (X a compact metric space, f a continuous map) that is not invertible. We can associate an invertible dynamical system to it as follows.

Since $f(X) \subset X$, it follows that $X \supset f(X) \supset f^2(X) \supset \ldots$ Hence $X, f(X), f^2(X), \ldots$ are nested compact sets so that $Y = X \cap f(X) \cap f^2(X) \cap \ldots$ is a nonempty compact set. It is invariant under f and the restriction $f|_Y$ is onto.

Since f maps Y onto itself, we can think of f^{-1} as a multi-valued function on Y. Let Z denote the set of all possible backward orbits of f, i.e., sequences $(x_0, x_1, x_2, ...)$ such that $\cdots \stackrel{f}{\mapsto} x_2 \stackrel{f}{\mapsto} x_1 \stackrel{f}{\mapsto} x_0$. The shift map is well defined on Z and it is invertible. Let F denote the inverse. Then the map $\phi: Z \to Y$ given by $\phi(x_0, x_1, x_2, ...) = x_0$ is a semi-conjugacy of F with $f|_Y$. The infinite product $Y \times Y \times ...$ is naturally endowed with a topology so that the set $Z \subset Y^{\infty}$ is compact while maps F and ϕ are continuous.

Examples

• One-sided shift
$$\sigma : \Sigma_A \to \Sigma_A$$
,
 $\sigma(s_0 s_1 s_2 \dots) = (s_1 s_2 \dots).$

The inverse limit space extension of σ is topologically conjugate to the two-sided shift $\sigma: \Sigma_{\mathcal{A}}^{\pm} \to \Sigma_{\mathcal{A}}^{\pm}$ over the same alphabet.

• Doubling map
$$D : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$$
,
 $D(\theta) = 2\theta \pmod{1}$.

The inverse limit space extension of D is topologically conjugate to the solenoid map.