MATH 614 Dynamical Systems and Chaos Lecture 23: Attractors. Hyperbolic periodic points.

Attractors

Suppose $F: D \rightarrow D$ is a topological dynamical system on a metric space D.

Definition. A compact set $N \subset D$ is called a **trapping** region for F if $F(N) \subset int(N)$.

If N is a trapping region, then $N, F(N), F^2(N), \ldots$ are nested compact sets and their intersection Λ is an invariant set: $F(\Lambda) \subset \Lambda$.

Definition. A set $\Lambda \subset D$ is called an **attractor** for F if there exists a neighborhood N of Λ such that the closure \overline{N} is a trapping region for F and $\Lambda = N \cap F(N) \cap F^2(N) \cap \ldots$ The attractor Λ is **transitive** if the restriction of F to Λ is a

transitive map.

Examples of attractors

• Any attracting fixed point or an attracting periodic orbit is a transitive attractor.

• The solenoid is a transitive attractor.

• The horseshoe map has an attractor that is not transitive.

Strange attractors

• The Lorenz attractor.

The Lorenz equations:

$$\begin{cases} \dot{x} = \sigma(y - x), \\ \dot{y} = x(\rho - z) - y, \\ \dot{z} = xy - \beta z, \end{cases}$$

where σ, ρ, β are parameters. In the case $\sigma = 10$, $\rho = 28$, $\beta = 8/3$, the system has a "strange" attractor.

Strange attractors

• The Hénon attractor.

The Hénon map is a simplified version of the first-return map for the Lorenz system:

$$F\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1-ax^2+y\\bx\end{pmatrix},$$

where a, b are parameters. In the case a = 1.4, b = 0.3, the system has a strange attractor.

Hyperbolic periodic points

Suppose $F : \mathbb{R}^n \to \mathbb{R}^n$ is a differentiable map.

Definition. A fixed point p of the map F is **hyperbolic** if the Jacobian matrix DF(p) has no eigenvalues of absolute value 1 or 0. A periodic point p of period n of the map F is **hyperbolic** if p is a hyperbolic fixed point of the map F^n .

Notice that $DF^n(p) = DF(F^{n-1}(p)) \dots DF(F(p)) DF(p)$. It follows that $DF^n(p), DF^n(F(p)), \dots, DF^n(F^{n-1}(p))$ are similar matrices. In particular, they have the same eigenvalues.

Definition. The hyperbolic periodic point p of period n is a **sink** if every eigenvalue λ of $DF^n(p)$ satisfies $0 < |\lambda| < 1$, a **source** if every eigenvalue λ satisfies $|\lambda| > 1$, and a **saddle point** otherwise.

Saddle point

The following figures show the phase portrait of a linear and a nonlinear two-dimensional maps near a saddle point.

Stable and unstable manifolds

Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a diffeomorphism and suppose p is a saddle point of F of period m.

Theorem There exists a smooth curve $\gamma: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ such that

(i)
$$\gamma(0) = p$$
;
(ii) $\gamma'(0)$ is an unstable eigenvector of $DF^m(p)$;
(iii) $F^{-1}(\gamma) \subset \gamma$;
(iv) $||F^{-n}(\gamma(t)) - F^{-n}(p)|| \to 0$ as $n \to \infty$.
(v) $||F^{-n}(x) - F^{-n}(p)|| < \varepsilon$ for all $n \ge 0$, then $x = \gamma(t)$ for some t .

The curve γ is called the **local unstable manifold** of F at p. The **local stable manifold** of F at p is defined as the local unstable manifold of F^{-1} at p.

Stable and unstable manifolds

Example

In angular coordinates (θ_1, θ_2) on the torus $\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z})^2$, $F\begin{pmatrix} \theta_1\\ \theta_2 \end{pmatrix} = \begin{pmatrix} \theta_1 - \varepsilon \sin \theta_1\\ \theta_2 + \varepsilon \sin \theta_2 \end{pmatrix}$.

There are 4 fixed points: one source, one sink, and two saddles.

Example

In angular coordinates (θ_1, θ_2) on the torus $\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z})^2$, $F\begin{pmatrix} \theta_1\\ \theta_2 \end{pmatrix} = \begin{pmatrix} \theta_1 + \varepsilon \sin \theta_1\\ \theta_2 + \varepsilon \sin \theta_2 \cos \theta_1 \end{pmatrix}$.

There are 4 fixed points: one source, one sink, and two saddles. e=0

