Dynamical Systems and Chaos Lecture 26:

MATH 614

Lecture 26:
Morse-Smale diffeomorphisms.
Hyperbolic dynamics.

Chain recurrence

Suppose X is a metric space with a distance function d. Let $F: X \to X$ be a continuous transformation.

Definition. A point $x \in X$ is **recurrent** for the map F if for any $\varepsilon > 0$ there is an integer n > 0 such that $d(F^n(x),x) < \varepsilon$. The point x is **chain recurrent** for F if, for any $\varepsilon > 0$, there are points $x_0 = x, x_1, x_2, \ldots, x_k = x$ and positive integers n_1, n_2, \ldots, n_k such that $d(F^{n_i}(x_{i-1}), x_i) < \varepsilon$ for $1 \le i \le k$.

A sequence x_0, x_1, \ldots, x_k is called an ε -pseudo-orbit of the map F if $d(F(x_{i-1}), x_i) < \varepsilon$ for $1 \le i \le k$. The point $x \in X$ is chain recurrent for F if, for any $\varepsilon > 0$, there exists an ε -pseudo-orbit x_0, x_1, \ldots, x_k with $x_0 = x_k = x$.

Morse-Smale diffeomorphisms

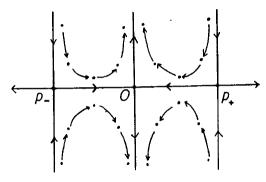
Definition. A diffeomorphism $F: X \to X$ is called **Morse-Smale** if

- (i) it has only finitely many chain recurrent points,
- (ii) every chain recurrent point is periodic,
- (iii) every periodic point is hyperbolic,
- (iv) all intersections of stable and unstable manifolds of saddle points of F are transversal.

Theorem (Palis) Any Morse-Smale diffeomorphism of a compact surface is C^1 -structurally stable.

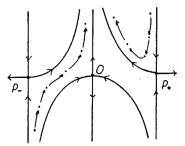
• $F(x,y) = (x_1, y_1)$, where $x_1 = \frac{1}{2}(x + x^3)$, $y_1 = y \cdot \frac{2}{3}$.

There are three fixed points: $p_+ = (1,0)$, $p_- = (-1,0)$ and O = (0,0). All three are saddle points.



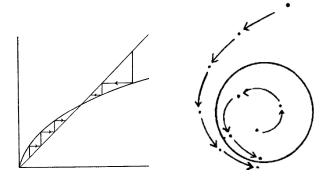
• $F(x,y)=(x_1,y_1)$, where $x_1=\frac{1}{2}(x+x^3)$, $y_1=y\cdot\frac{2}{1+2x^2}+\phi(|x|)$, where $\phi(t)>0$ for 0< t<1 and $\phi(t)=0$ otherwise.

There are still three fixed points: $p_+ = (1,0)$, $p_- = (-1,0)$ and O = (0,0). All three are still saddle points.



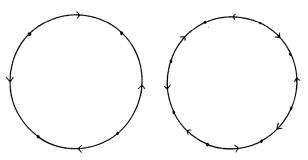
The map F is a Morse-Smale diffeomorphism.

In polar coordinates (r, θ) , $F(r, \theta) = (r_1, \theta_1)$, where $r_1 = 2r - r^3$, $\theta_1 = \theta + 2\pi\omega$.



The chain recurrent points are the origin and all points of the invariant circle r = 1.

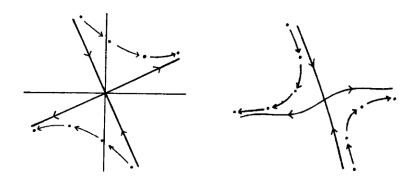
$$F(r,\theta)=(r_1,\theta_1)$$
, where $r_1=2r-r^3$, $\theta_1=\theta+2\pi(p/q)+\varepsilon\sin(q\omega)$, $p,q\in\mathbb{Z}$ and $\varepsilon>0$ is small.



The restriction of F to the invariant circle r=1 is a Morse-Smale diffeomorphism of the circle. It follows that F is a Morse-Smale diffeomorphism of the plane.

Hyperbolic dynamics

Phase portraits of a linear and a nonlinear two-dimensional maps near a saddle point:



Stable and unstable manifolds

Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a diffeomorphism and suppose p is a saddle point of F of period m.

Theorem There exists a smooth curve $\gamma:(-\varepsilon,\varepsilon)\to\mathbb{R}^2$ such that

(i)
$$\gamma(0) = p$$
;

(ii) $\gamma'(0)$ is an unstable eigenvector of $DF^m(p)$;

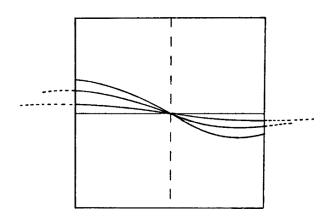
(iii)
$$F^{-1}(\gamma) \subset \gamma$$
;

(iv)
$$||F^{-n}(\gamma(t)) - F^{-n}(p)|| \to 0$$
 as $n \to \infty$.

(v)
$$||F^{-n}(x) - F^{-n}(p)|| < \varepsilon$$
 for all $n \ge 0$, then $x = \gamma(t)$ for some t .

The curve γ is called the **local unstable manifold** of F at p. The **local stable manifold** of F at p is defined as the local unstable manifold of F^{-1} at p.

Stable and unstable manifolds



Hyperbolic set

Suppose $F: D \to D$ is a diffeomorphism of a domain $D \subset \mathbb{R}^k$.

Definition. A set $\Lambda \subset D$ is called a **hyperbolic set** for F if for any $x \in \Lambda$ there exists a pair of subspaces $E^s(x), E^u(x) \subset \mathbb{R}^k$ such that

- (i) $\mathbb{R}^k = E^s(x) \oplus E^u(x)$ for all $x \in \Lambda$;
- (ii) $DF(E^s(x)) = E^s(F(x))$ and $DF(E^u(x)) = E^u(F(x))$ for all $x \in \Lambda$;
 - (iii) the subspaces $E^s(x)$ and $E^u(x)$ vary continuously with x;
- (iv) there is a constant $\lambda > 1$ such that $\|DF(x)\mathbf{v}\| \ge \lambda \|\mathbf{v}\|$ for all $\mathbf{v} \in E^u(x)$ and $\|DF(x)\mathbf{v}\| \le \lambda^{-1}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^s(x)$.

Hyperbolic set

Conditions (ii) and (iv) imply that $||DF^n(x)\mathbf{v}|| \ge \lambda^n ||\mathbf{v}||$ for all $\mathbf{v} \in E^u(x)$ and $||DF^n(x)\mathbf{v}|| \le \lambda^{-n} ||\mathbf{v}||$ for all $\mathbf{v} \in E^s(x)$.

Note that condition (iv) may not be preserved under changes of coordinates. We can modify it as follows:

(iv') there are constants $c, \lambda > 1$ such that $\|DF^n(x)\mathbf{v}\| \ge c^{-1}\lambda^n\|\mathbf{v}\|$ for all $\mathbf{v} \in E^u(x)$ and $\|DF^n(x)\mathbf{v}\| \le c\lambda^{-n}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^s(x)$.

Stable and unstable manifolds

Let $F: \mathbb{R}^k \to \mathbb{R}^k$ be a diffeomorphism and suppose Λ is a compact invariant hyperbolic set for F. Assume that $\dim E^u(x) = 1$ for all $x \in \Lambda$ (this is automatic if k = 2).

Theorem There exists $\varepsilon > 0$ and, for any $x \in \Lambda$, a smooth curve $\gamma_x : (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ such that

- (i) $\gamma_{x}(0) = x$;
- **(ii)** $\gamma'_{x}(0) \in E^{u}(x) \setminus \{\mathbf{0}\};$
- (iii) γ_x depends continuously on x;
- (iv) $F(\gamma_x) \supset \gamma_{F(x)}$;
- (v) $||F^{-n}(\gamma_x(t)) F^{-n}(x)|| \to 0$ as $n \to \infty$.

The curve γ_x is called the **local unstable manifold** of F at x. In the case $\dim E^u(x) = d > 1$, the theorem holds as well, with curves γ_x replaced by d-dimensional smooth manifolds. The **local stable manifold** of F at a point x is defined as the local unstable manifold of F^{-1} at x.

Examples of hyperbolic sets

- For any hyperbolic periodic point, the orbit is a hyperbolic set.
- For a hyperbolic toral automorphism, the entire torus is a hyperbolic set (such a map is called an Anosov map; it is C^1 -structurally stable).
- For the horseshoe map, the invariant Cantor set is hyperbolic. It is an example where all chain recurrent points form a hyperbolic set (Axiom A map). Such a map is structurally stable.

Shadowing Lemma

Suppose X is a metric space with a distance function d. Let $F: X \to X$ be a continuous transformation.

Definition. We say that a sequence $x_n, x_{n+1}, \ldots, x_m$ of elements of X is δ -shadowed by the orbit of a point $y \in X$ if $d(F^i(y), x_i) < \delta$ for $n \le i \le m$.

Recall that the sequence $x_n, x_{n+1}, \ldots, x_m$ is an ε -pseudo-orbit of the map F if $d(F(x_{i-1}), x_i) < \varepsilon$ for $n < i \le m$.

Theorem (Bowen) Suppose F is a diffeomorphism that admits an invariant hyperbolic set Λ . Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that every ε -pseudo-orbit $x_n, x_{n+1}, \ldots, x_m$ of elements of Λ is δ -shadowed by the orbit of some $y \in \Lambda$.