
MATH 614

Dynamical Systems and Chaos

Lecture 27:

Holomorphic dynamics.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i 2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as

polynomials in i (but keep in mind that i 2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is

z̄ = x − iy . The modulus of z is |z | =
√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2− (iy)2 = x2+ y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Complex exponentials

Definition. For any z ∈ C let

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · ·

Remark. A sequence of complex numbers
z1 = x1 + iy1, z2 = x2 + iy2, . . . converges

to z = x + iy if xn → x and yn → y as n → ∞.

Theorem 1 If z = x + iy , x , y ∈ R, then

ez = ex(cos y + i sin y).

In particular, e iφ = cosφ+ i sinφ, φ ∈ R.

Theorem 2 ez+w = ez · ew for all z ,w ∈ C.



Proposition e iφ = cosφ+ i sinφ for all φ ∈ R.

Proof: e iφ = 1 + iφ+
(iφ)2

2!
+ · · ·+ (iφ)n

n!
+ · · ·

The sequence 1, i , i 2, i 3, . . . , in, . . . is periodic:
1, i ,−1,−i
︸ ︷︷ ︸

, 1, i ,−1,−i
︸ ︷︷ ︸

, . . .

It follows that

e iφ = 1− φ2

2!
+

φ4

4!
− · · ·+ (−1)k

φ2k

(2k)!
+ · · ·

+ i

(

φ− φ3

3!
+

φ5

5!
− · · ·+ (−1)k

φ2k+1

(2k + 1)!
+ · · ·

)

= cosφ+ i sinφ.



Geometric representation

Any complex number z = x + iy is represented by

the vector/point (x , y) ∈ R2.

y

x0

r

φ
0

x = r cosφ, y = r sinφ =⇒ z = r(cosφ+ i sinφ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then

z1z2 = r1r2e
i(φ1+φ2), z1/z2 = (r1/r2)e

i(φ1−φ2).



Fundamental Theorem of Algebra

Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with

multiplicities).

Equivalently, if

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Holomorphic functions

Suppose D ⊂ C is a domain and consider a

function f : D → C. The function f is called
complex differentiable at a point z0 ∈ D if

lim
z→z0

f (z)− f (z0)

z − z0
exists.

The limit value is the derivative f ′(z0).

The function f is called holomorphic at a point
z0 ∈ D if it is complex differentiable in a

neighborhood of z0. f is holomorphic on D if it is
holomorphic at every point of D.



To each complex function f : D → C we associate

a real vector-valued function (u, v) : D → R
2

defined by f (x + iy) = u(x , y) + iv(x , y).

Theorem The function f is holomorphic if and

only if u, v have continuous partial derivatives ∂u
∂x
,

∂u
∂y
, ∂v
∂x
, ∂v
∂y

and, moreover, the Cauchy-Riemann
equations are satisfied:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.



Analytic functions

The function f : D → C is called analytic at a point z0 ∈ D

if it can be expanded into a convergent power series

f (z) =

∞∑

n=0

cn(z − z0)
n

in a neighborhood of z0. f is analytic on D if it is analytic at
every point of D.

Examples.

• Any complex polynomial is an analytic function on C.

• Any rational function R(z) = P(z)/Q(z), where P,Q are
polynomials, is analytic on its domain.

• The exponential function is analytic on C.



Theorem A function f : D → C is analytic on D

if and only if it is holomorphic on D. If f is analytic
then it coincides with its Taylor series

f (z) =
∞∑

n=0

f (n)(z0)

n!
(z − z0)

n

on any open disk B(z0, r) = {z ∈ C : |z − z0| < r}
that is contained within D.



Complex linear functions

Lα : C → C, α ∈ C.
Lα(z) = αz for all z ∈ C.

If α = 1 then Lα is the identity map. Otherwise 0
is the only fixed point.

Dynamics of Lα depends on α.

Lnα(z) = αnz for n = 1, 2, . . .
Let α = ρe iθ, z = re iφ. Then

Lnα(z) = ρnre i(nθ+φ).

If |α| < 1 then lim
n→∞

Lnα(z) = 0 for all z ∈ C.

If |α| > 1 then lim
n→∞

Lnα(z) = ∞ for all z 6= 0.



|α| = 0.9 |α| = 1.1



Rotations of the plane

If |α| = 1 then Lα is the rotation of the complex

plane by angle θ, the argument of α (α = e iθ).

Each circle {z ∈ C : |z | = r}, r > 0 is invariant

under Lα. The restriction of Lα is a rotation of the
circle.

In polar coordinates (r , φ),

(r , φ) 7→ (r , φ+ θ).



θ
1



The argument of α, |α| = 1 is a rational multiple
of π if and only if α is a root of unity: αk = 1 for
some integer k > 0.

If α is a root of unity k
√
1, then Lkα is the identity.

Hence all orbits are periodic.

If α is not a root of unity then

(i) each orbit is dense in a circle centered at the
origin (Jacobi’s Theorem);

(ii) each orbit is uniformly distributed with respect
to the length measure on the circle

(the Kronecker-Weyl Theorem).



Complex affine functions

Lα,β : C → C, α, β ∈ C.
Lα,β(z) = αz + β for all z ∈ C.

L1,β is the translation of the complex plane by β.

Ln1,β(z) = z + nβ for n = 1, 2, . . .
Each orbit tends to infinity (unless β 6= 0).

If α 6= 1 then Lα,β is conjugate to Lα.

The equation Lα,β(z) = z has a unique solution
z0 = β(1− α)−1. Then Lα,β(z)− z0 = Lα(z − z0)

for all z ∈ C.

Hence Lα,β = L1,z0LαL
−1
1,z0

.



Squaring function

Q0 : C → C, Q0(z) = z2.

Let z = re iφ. Then Q0(z) = r 2e2iφ.

Qn
0 (z) = z2

n

= r 2
n

e i(2
nφ).

If r = |z | < 1 then Qn
0 (z) → 0 as n → ∞.

If |z | > 1 then Qn
0 (z) → ∞ as n → ∞.

The unit circle |z | = 1 is invariant under Q0 and
the restriction of Q0 is conjugate to the doubling

map.

In polar coordinates (r , φ),

(r , φ) 7→ (r 2, 2φ).



Theorem The squaring map Q0 is chaotic on the

unit circle, that is,
• it is topologically transitive,

• periodic points are dense,
• it has sensitive dependence on initial conditions.

Proposition For any z ∈ C, |z | = 1 and any

neighborhood W of z we have

∞⋃

n=0

Qn
0 (W ) = C \ {0}.



Proof: Any neighborhood of a point on the unit
circle contains a small chunk of a wedge of the form

V = {re iφ | r1 < r < r2, φ1 < φ < φ2},

where r1 < 1 < r2. Now

Qn
0 (V ) = {re iφ | r 2n1 < r < r 2

n

2 , 2nφ1 < φ < 2nφ2}

for n = 1, 2, . . . If 2n(φ2 − φ1) > 2π then

Qn
0 (V ) = {z ∈ C : r 2

n

1 < |z | < r 2
n

2 }.

Since r1 < 1 < r2, it follows that

∞⋃

n=0

Qn
0 (V ) = C \ {0}.



Fixed points

Let U ⊂ C be a domain and F : U → C be a
holomorphic function.

Suppose that F (z0) = z0 for some z0 ∈ U .

The fixed point z0 is called

• attracting if |F ′(z0)| < 1;

• repelling if |F ′(z0)| > 1;
• neutral if |F ′(z0)| = 1.

Example. L′α(0) = α.



Theorem 1 Suppose z0 is an attracting fixed point

for a holomorphic function F . Then there exist
δ > 0 and 0 < µ < 1 such that

|F (z)− z0| ≤ µ|z − z0|

for any z ∈ D = {z ∈ C : |z − z0| < δ}.
In particular, lim

n→∞
F n(z) = z0 for all z ∈ D.

Hint. Take |F ′(z0)| < µ < 1.



Theorem 2 Suppose z0 is a repelling fixed point

for a holomorphic function F . Then there exist
δ > 0 and M > 1 such that

|F (z)− z0| ≥ M |z − z0|

for all z ∈ D = {z ∈ C : |z − z0| < δ}.
In particular, for any z ∈ D \ {z0} there is an
integer n > 0 such that F n(z) /∈ D.

Hint. Take 1 < M < |F ′(z0)|.



Periodic points

Let U ⊂ C be a domain and F : U → U be a

holomorphic function. Suppose that F n(z0) = z0
for some z0 ∈ U and an integer n > 0.

The periodic orbit
z0, F (z0), F

2(z0), . . . , F
n−1(z0), F

n(z0) = z0, . . .
is called

• attracting if |(F n)′(z0)| < 1;
• repelling if |(F n)′(z0)| > 1;

• neutral if |(F n)′(z0)| = 1.

(F n)′(z0) =
n−1∏

k=0

F ′(F k(z0)).


