MATH 614
 Dynamical Systems and Chaos

Lecture 27: Holomorphic dynamics.

Complex numbers

\mathbb{C} : complex numbers.
Complex number:

$$
\begin{aligned}
& z=x+i y, \\
& \text { where } x, y \in \mathbb{R} \text { and } i^{2}=-1 \text {. }
\end{aligned}
$$

$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \\
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right), \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$.

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2} .
$$

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots
$$

Remark. A sequence of complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}, \ldots$ converges to $z=x+i y$ if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

Theorem 1 If $z=x+i y, x, y \in \mathbb{R}$, then

$$
e^{z}=e^{x}(\cos y+i \sin y)
$$

In particular, $e^{i \phi}=\cos \phi+i \sin \phi, \phi \in \mathbb{R}$.
Theorem $2 e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i \phi}=\cos \phi+i \sin \phi$ for all $\phi \in \mathbb{R}$.
Proof: $e^{i \phi}=1+i \phi+\frac{(i \phi)^{2}}{2!}+\cdots+\frac{(i \phi)^{n}}{n!}+\cdots$
The sequence $1, i, i^{2}, i^{3}, \ldots, i^{n}, \ldots$ is periodic:
$\underbrace{1, i,-1,-i}, \underbrace{1, i,-1,-i}, \ldots$
It follows that

$$
\begin{aligned}
& e^{i \phi}=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\cdots+(-1)^{k} \frac{\phi^{2 k}}{(2 k)!}+\cdots \\
& +i\left(\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\cdots+(-1)^{k} \frac{\phi^{2 k+1}}{(2 k+1)!}+\cdots\right) \\
& =\cos \phi+i \sin \phi .
\end{aligned}
$$

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$$
x=r \cos \phi, y=r \sin \phi \Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}
$$

$$
\text { If } z_{1}=r_{1} e^{i \phi_{1}} \text { and } z_{2}=r_{2} e^{i \phi_{2}} \text {, then }
$$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\phi_{1}+\phi_{2}\right)}, z_{1} / z_{2}=\left(r_{1} / r_{2}\right) e^{i\left(\phi_{1}-\phi_{2}\right)} .
$$

Fundamental Theorem of Algebra

Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Holomorphic functions

Suppose $D \subset \mathbb{C}$ is a domain and consider a function $f: D \rightarrow \mathbb{C}$. The function f is called complex differentiable at a point $z_{0} \in D$ if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \text { exists. }
$$

The limit value is the derivative $f^{\prime}\left(z_{0}\right)$.
The function f is called holomorphic at a point $z_{0} \in D$ if it is complex differentiable in a neighborhood of z_{0}. f is holomorphic on D if it is holomorphic at every point of D.

To each complex function $f: D \rightarrow \mathbb{C}$ we associate a real vector-valued function $(u, v): D \rightarrow \mathbb{R}^{2}$ defined by $f(x+i y)=u(x, y)+i v(x, y)$.

Theorem The function f is holomorphic if and only if u, v have continuous partial derivatives $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ and, moreover, the Cauchy-Riemann equations are satisfied:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Analytic functions

The function $f: D \rightarrow \mathbb{C}$ is called analytic at a point $z_{0} \in D$ if it can be expanded into a convergent power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

in a neighborhood of z_{0}. f is analytic on D if it is analytic at every point of D.

Examples.

- Any complex polynomial is an analytic function on \mathbb{C}.
- Any rational function $R(z)=P(z) / Q(z)$, where P, Q are polynomials, is analytic on its domain.
- The exponential function is analytic on \mathbb{C}.

Theorem A function $f: D \rightarrow \mathbb{C}$ is analytic on D if and only if it is holomorphic on D. If f is analytic then it coincides with its Taylor series

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

on any open disk $B\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ that is contained within D.

Complex linear functions

$L_{\alpha}: \mathbb{C} \rightarrow \mathbb{C}, \alpha \in \mathbb{C}$.
$L_{\alpha}(z)=\alpha z$ for all $z \in \mathbb{C}$.
If $\alpha=1$ then L_{α} is the identity map. Otherwise 0 is the only fixed point.
Dynamics of L_{α} depends on α.
$L_{\alpha}^{n}(z)=\alpha^{n} z$ for $n=1,2, \ldots$
Let $\alpha=\rho e^{i \theta}, z=r e^{i \phi}$. Then

$$
L_{\alpha}^{n}(z)=\rho^{n} r e^{i(n \theta+\phi)} .
$$

If $|\alpha|<1$ then $\lim _{n \rightarrow \infty} L_{\alpha}^{n}(z)=0$ for all $z \in \mathbb{C}$.
If $|\alpha|>1$ then $\lim _{n \rightarrow \infty} L_{\alpha}^{n}(z)=\infty$ for all $z \neq 0$.

$|\alpha|=0.9$

$$
|\alpha|=1.1
$$

Rotations of the plane

If $|\alpha|=1$ then L_{α} is the rotation of the complex plane by angle θ, the argument of $\alpha\left(\alpha=e^{i \theta}\right)$.
Each circle $\{z \in \mathbb{C}:|z|=r\}, r>0$ is invariant under L_{α}. The restriction of L_{α} is a rotation of the circle.

In polar coordinates (r, ϕ),

$$
(r, \phi) \mapsto(r, \phi+\theta)
$$

The argument of $\alpha,|\alpha|=1$ is a rational multiple of π if and only if α is a root of unity: $\alpha^{k}=1$ for some integer $k>0$.
If α is a root of unity $\sqrt[k]{1}$, then L_{α}^{k} is the identity. Hence all orbits are periodic.
If α is not a root of unity then
(i) each orbit is dense in a circle centered at the origin (Jacobi's Theorem);
(ii) each orbit is uniformly distributed with respect to the length measure on the circle (the Kronecker-Weyl Theorem).

Complex affine functions

$L_{\alpha, \beta}: \mathbb{C} \rightarrow \mathbb{C}, \quad \alpha, \beta \in \mathbb{C}$.
$L_{\alpha, \beta}(z)=\alpha z+\beta$ for all $z \in \mathbb{C}$.
$L_{1, \beta}$ is the translation of the complex plane by β.
$L_{1, \beta}^{n}(z)=z+n \beta$ for $n=1,2, \ldots$
Each orbit tends to infinity (unless $\beta \neq 0$).
If $\alpha \neq 1$ then $L_{\alpha, \beta}$ is conjugate to L_{α}.
The equation $L_{\alpha, \beta}(z)=z$ has a unique solution
$z_{0}=\beta(1-\alpha)^{-1}$. Then $L_{\alpha, \beta}(z)-z_{0}=L_{\alpha}\left(z-z_{0}\right)$ for all $z \in \mathbb{C}$.
Hence $L_{\alpha, \beta}=L_{1, z_{0}} L_{\alpha} L_{1, z_{0}}^{-1}$.

Squaring function

$Q_{0}: \mathbb{C} \rightarrow \mathbb{C}, \quad Q_{0}(z)=z^{2}$.
Let $z=r e^{i \phi}$. Then $Q_{0}(z)=r^{2} e^{2 i \phi}$.
$Q_{0}^{n}(z)=z^{2^{n}}=r^{2^{n}} e^{i\left(2^{n} \phi\right)}$.
If $r=|z|<1$ then $Q_{0}^{n}(z) \rightarrow 0$ as $n \rightarrow \infty$.
If $|z|>1$ then $Q_{0}^{n}(z) \rightarrow \infty$ as $n \rightarrow \infty$.
The unit circle $|z|=1$ is invariant under Q_{0} and the restriction of Q_{0} is conjugate to the doubling map.
In polar coordinates (r, ϕ),

$$
(r, \phi) \mapsto\left(r^{2}, 2 \phi\right) .
$$

Theorem The squaring map Q_{0} is chaotic on the unit circle, that is,

- it is topologically transitive,
- periodic points are dense,
- it has sensitive dependence on initial conditions.

Proposition For any $z \in \mathbb{C},|z|=1$ and any neighborhood W of z we have

$$
\bigcup_{n=0}^{\infty} Q_{0}^{n}(W)=\mathbb{C} \backslash\{0\}
$$

Proof: Any neighborhood of a point on the unit circle contains a small chunk of a wedge of the form

$$
V=\left\{r e^{i \phi} \mid r_{1}<r<r_{2}, \phi_{1}<\phi<\phi_{2}\right\}
$$

where $r_{1}<1<r_{2}$. Now

$$
Q_{0}^{n}(V)=\left\{r e^{i \phi} \mid r_{1}^{2^{n}}<r<r_{2}^{2^{n}}, 2^{n} \phi_{1}<\phi<2^{n} \phi_{2}\right\}
$$

for $n=1,2, \ldots$ If $2^{n}\left(\phi_{2}-\phi_{1}\right)>2 \pi$ then

$$
Q_{0}^{n}(V)=\left\{z \in \mathbb{C}: r_{1}^{2^{n}}<|z|<r_{2}^{2^{n}}\right\}
$$

Since $r_{1}<1<r_{2}$, it follows that

$$
\bigcup_{n=0}^{\infty} Q_{0}^{n}(V)=\mathbb{C} \backslash\{0\}
$$

Fixed points

Let $U \subset \mathbb{C}$ be a domain and $F: U \rightarrow \mathbb{C}$ be a holomorphic function.
Suppose that $F\left(z_{0}\right)=z_{0}$ for some $z_{0} \in U$.
The fixed point z_{0} is called

- attracting if $\left|F^{\prime}\left(z_{0}\right)\right|<1$;
- repelling if $\left|F^{\prime}\left(z_{0}\right)\right|>1$;
- neutral if $\left|F^{\prime}\left(z_{0}\right)\right|=1$.

Example. $\quad L_{\alpha}^{\prime}(0)=\alpha$.

Theorem 1 Suppose z_{0} is an attracting fixed point for a holomorphic function F. Then there exist $\delta>0$ and $0<\mu<1$ such that

$$
\left|F(z)-z_{0}\right| \leq \mu\left|z-z_{0}\right|
$$

for any $z \in D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}$.
In particular, $\lim _{n \rightarrow \infty} F^{n}(z)=z_{0}$ for all $z \in D$.
Hint. Take $\left|F^{\prime}\left(z_{0}\right)\right|<\mu<1$.

Theorem 2 Suppose z_{0} is a repelling fixed point for a holomorphic function F. Then there exist $\delta>0$ and $M>1$ such that

$$
\left|F(z)-z_{0}\right| \geq M\left|z-z_{0}\right|
$$

for all $z \in D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}$.
In particular, for any $z \in D \backslash\left\{z_{0}\right\}$ there is an integer $n>0$ such that $F^{n}(z) \notin D$.

Hint. Take $1<M<\left|F^{\prime}\left(z_{0}\right)\right|$.

Periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \rightarrow U$ be a holomorphic function. Suppose that $F^{n}\left(z_{0}\right)=z_{0}$ for some $z_{0} \in U$ and an integer $n>0$.
The periodic orbit
$z_{0}, F\left(z_{0}\right), F^{2}\left(z_{0}\right), \ldots, F^{n-1}\left(z_{0}\right), F^{n}\left(z_{0}\right)=z_{0}, \ldots$ is called

- attracting if $\left|\left(F^{n}\right)^{\prime}\left(z_{0}\right)\right|<1$;
- repelling if $\left|\left(F^{n}\right)^{\prime}\left(z_{0}\right)\right|>1$;
- neutral if $\left|\left(F^{n}\right)^{\prime}\left(z_{0}\right)\right|=1$.

$$
\left(F^{n}\right)^{\prime}\left(z_{0}\right)=\prod_{k=0}^{n-1} F^{\prime}\left(F^{k}\left(z_{0}\right)\right)
$$

