MATH 614

Dynamical Systems and Chaos

Lecture 30: Neutral fixed points (continued).

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \rightarrow \mathbb{C}$ be a holomorphic function. Suppose that $F\left(z_{0}\right)=z_{0}$ for some $z_{0} \in U$. The fixed point z_{0} is called

- attracting if $\left|F^{\prime}\left(z_{0}\right)\right|<1$;
- repelling if $\left|F^{\prime}\left(z_{0}\right)\right|>1$;
- neutral if $\left|F^{\prime}\left(z_{0}\right)\right|=1$.

Now suppose that $F^{n}\left(z_{1}\right)=z_{1}$ for some $z_{1} \in U$ and an integer $n \geq 1$. The periodic point z_{1} is called

- attracting if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|<1$;
- repelling if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|>1$;
- neutral if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|=1$.

The multiplier $\left(F^{n}\right)^{\prime}\left(z_{1}\right)$ is the same for all points in the orbit of z_{1} (in particular, all these points are of the same type as z_{1}). Moreover, the multiplier is preserved under any holomorphic change of coordinates.

Neutral fixed points

Example. - $F(z)=z+z^{2}$.
The map has a fixed point at 0 , which is neutral: $F^{\prime}(0)=1$. The set D_{0} of all points z satisfying $F^{n}(z) \rightarrow 0$ as $n \rightarrow \infty$ is open and connected.

The fixed point 0 is one of the cusp points at the boundary of D_{0}. The others correspond to eventually fixed points.

Neutral fixed points

Proposition Suppose a function F is holomorphic at 0 and satisfies $F(0)=0, F^{\prime}(0)=1, F^{\prime \prime}(0)=2$ so that $F(z)=z+z^{2}+O\left(|z|^{3}\right)$ as $z \rightarrow 0$.
Then there exists $\mu>0$ such that (i) all points in the disc $D_{-}=\{z \in \mathbb{C}:|z+\mu|<\mu\}$ are attracted to 0 ; and (ii) all points in the disc $D_{+}=\{z \in \mathbb{C}:|z-\mu|<\mu\}$ are repelled from 0 .

Proof: We change coordinates using the function $H(z)=1 / z$, which maps the discs D_{-}and D_{+}onto halfplanes $\operatorname{Re} z<-1 /(2 \mu)$ and $\operatorname{Re} z>1 /(2 \mu)$.
The function F is changed to $G(z)=1 / F(1 / z)$. Since $F(z)=z+z^{2}+O\left(|z|^{3}\right)$ as $z \rightarrow 0$, it follows that

$$
\begin{aligned}
F(1 / z) & =z^{-1}+z^{-2}+O\left(|z|^{-3}\right) \\
& =z^{-1}\left(1+z^{-1}+O\left(|z|^{-2}\right)\right) \text { as } z \rightarrow \infty .
\end{aligned}
$$

Then

$$
\begin{aligned}
G(z) & =z\left(1+z^{-1}+O\left(|z|^{-2}\right)\right)^{-1} \\
& =z\left(1-z^{-1}+O\left(|z|^{-2}\right)\right)=z-1+O\left(|z|^{-1}\right) .
\end{aligned}
$$

If μ is small enough, then the halfplane $\operatorname{Re} z<-1 /(2 \mu)$ is invariant under the map G while the halfplane $\operatorname{Re} z>1 /(2 \mu)$ is invariant under G^{-1}.

In the proof of the proposition, we could use wedge-shaped regions instead of halfplanes. This would allow to extend basins of attraction from discs to cardioid-shaped regions.

In the case not all points near 0 are attracted to 0 , the set of points that are attracted is locally a simply connected domain with 0 on its boundary. This domain is called the attracting petal of the fixed point 0 . Similarly, there is also the repelling petal of 0 .

More types of neutral fixed points

$$
F_{1}(z)=z+z^{3}
$$

$$
F_{2}(z)=z+z^{5}
$$

In the first example, there are two attracting and two repelling petals of the fixed point 0 . In the second example, there are 4 attracting and 4 repelling petals.

Siegel discs

Theorem (Siegel) Let F be a holomorphic function at z_{0} such that $F\left(z_{0}\right)=z_{0}$ and $F^{\prime}\left(z_{0}\right)=e^{2 \pi i \alpha}$, where α is irrational. Suppose that α is not very well approximated by rational numbers, namely, $|\alpha-p / q|>a q^{-b}$ for some $a, b>0$ and all $p, q \in \mathbb{Z}$. Then there is a neighborhood U of z_{0} on which the function F is analytically conjugate to the irrational rotation $L(z)=e^{2 \pi i \alpha} z$.

The domain U is called a Siegel disc.
In the case α is well approximated by rational numbers, it can happen that the fixed point z_{0} is a limit point of other periodic points of the map F.

Idea of the proof: We are looking for a map h of the form $h(z)=z+\sum_{i=2}^{\infty} c_{i} z^{i}$, where c_{i} are unknown coefficients. Let $F(z)=\lambda z+\sum_{i=2}^{\infty} a_{i} z^{i}$ be the Taylor expansion of F, $\lambda=e^{2 \pi i \alpha}$.
The condition $F \circ h=h \circ L$ holds if

$$
\lambda h(z)+\sum_{i=2}^{\infty} a_{i}(h(z))^{i}=\lambda z+\sum_{i=2}^{\infty} c_{i} \lambda^{i} z^{i}
$$

or, equivalently,

$$
\sum_{i=2}^{\infty}\left(\lambda^{i}-\lambda\right) c_{i} z^{i}=\sum_{i=2}^{\infty} a_{i}(h(z))^{i}
$$

From this equality of formal power series we can recursively determine all coefficients c_{i} provided that λ is not a root of unity. For example, $c_{2}=a_{2} /\left(\lambda^{2}-\lambda\right)$. In general, $c_{i}=K_{i}\left(\lambda, a_{2}, \ldots, a_{i}, c_{2}, \ldots, c_{i-1}\right) /\left(\lambda^{i}-\lambda\right)$ for some polynomial K_{i}.
The Siegel disc exists if and only if the radius of convergence for the power series $h(z)$ is positive.

