MATH 614 Dynamical Systems and Chaos Lecture 31: The quadratic maps. The Mandelbrot set.

The Julia set

Suppose $P: U \to U$ is a holomorphic map, where U is a domain in \mathbb{C} , the entire plane \mathbb{C} , or the Riemann sphere $\overline{\mathbb{C}}$.

Informally, the Julia set of P is the set of points where iterates of P exhibit sensitive dependence on initial conditions (chaotic behavior). The Fatou set of P is the set of points where iterates of P exhibit regular, stable behavior.

Definition. The **Julia set** J(P) of P is the closure of the set of repelling periodic points of P.

Example. $Q_0 : \mathbb{C} \to \mathbb{C}, \ Q_0(z) = z^2.$

0 is an attracting fixed point. The other periodic points are located on the unit circle |z| = 1. All of them are repelling.

Any point of the form

$$\exp\left(2\pi i\frac{m}{n}\right),$$

where m, n are integers and n is odd, is periodic. Hence periodic points are dense in the unit circle.

Thus
$$J(Q_0) = \{z \in \mathbb{C} : |z| = 1\}.$$

Quadratic family

The quadratic family $\ Q_c:\mathbb{C} o\mathbb{C},\ c\in\mathbb{C},\ Q_c(z)=z^2+c.$

Theorem $J(Q_{-2}) = [-2, 2].$

Proof: The map $H(z) = z + z^{-1}$ is holomorphic on $R = \{z \in \mathbb{C} : |z| > 1\}$. It maps R onto $\mathbb{C} \setminus [-2, 2]$ in a one-to-one way (a conformal map). Also, H maps each of the semicircles

 $\{e^{i\phi}\mid 0\leq\phi\leq\pi\}$ and $\{e^{i\phi}\mid -\pi\leq\phi\leq 0\}$

homeomorphically onto [-2, 2]. Finally, $H(Q_0(z)) = Q_{-2}(H(z))$ for all $z \neq 0$.

Quadratic family

The quadratic family $Q_c:\mathbb{C} o\mathbb{C},\ c\in\mathbb{C},\ Q_c(z)=z^2+c.$

The dynamics of Q_c depends on properties of the post-critical orbit $0, Q_c(0), Q_c^2(0), \ldots$

Theorem (Fundamental Dichotomy) For any $c \in \mathbb{C}$,

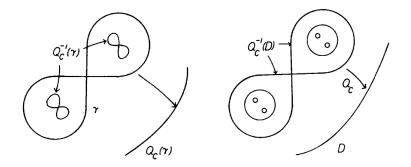
either the post-critical orbit $0, Q_c(0), Q_c^2(0), \ldots$ escapes to ∞ , in which case the Julia set $J(Q_c)$ is a Cantor set,

or the post-critical orbit is bounded, in which case the Julia set $J(Q_c)$ is connected.

Lemma If $|z| > \max(|c|, 2)$ then $|Q_c^n(z)| \to \infty$ as $n \to \infty$.

Suppose γ_0 is a simple closed curve in \mathbb{C} and D_0 is the domain bounded by γ_0 . Let $\gamma_1 = Q_c^{-1}(\gamma_0)$ and $D_1 = Q_c^{-1}(D_0)$. Then γ_1 is the boundary of D_1 .

If $c \in D_0$ then γ_1 is a simple closed curve. If $c \in \gamma_0$ then γ_1 is a "figure eight". Otherwise γ_1 consists of two curves.



If D_0 is a large disk then $D_1 = Q_c^{-1}(D_0)$ is contained in D_0 . Hence $D_0 \supset D_1 \supset D_2 \supset \ldots$, where $D_{n+1} = Q_c^{-1}(D_n), n \ge 0$.

Note that the set $K(Q_c) = \bigcap_{n=0}^{\infty} D_n$ does not depend on the choice of D_0 .

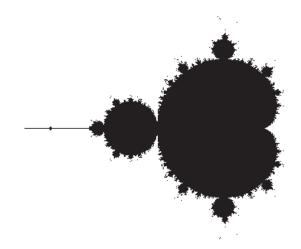
Now either $c \in D_n$ for all n, in which case each D_n is a simply connected domain so that $K(Q_c)$ is also connected. In this case, $J(Q_c)$ is the boundary of $K(Q_c)$.

Otherwise $c \in D_n \setminus D_{n+1}$ for some *n*, in which case D_{n+k} has 2^{k-1} connected components, $k = 0, 1, 2, \ldots$, so that $K(Q_c)$ is a Cantor set. In this case, $J(Q_c) = K(Q_c)$.

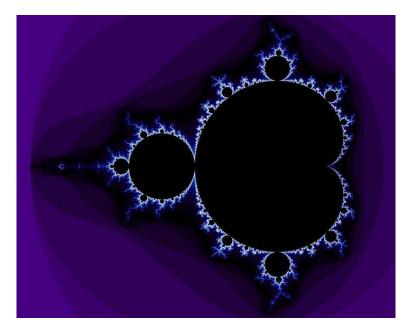
Definition. The **Mandelbrot set** \mathcal{M} is the set of all $c \in \mathbb{C}$ such that $|Q_c^n(0)| \not\to \infty$ as $n \to \infty$.

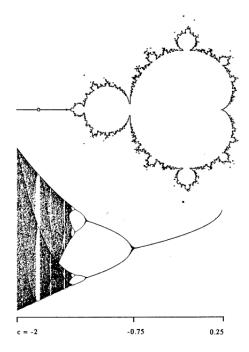
 $c \in \mathcal{M}$ if and only if the Julia set $J(Q_c)$ is connected.

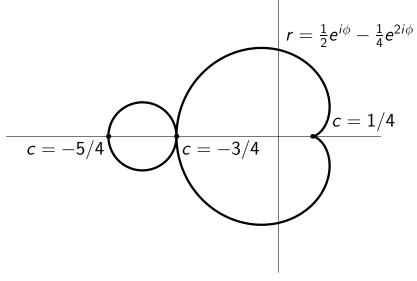
The Mandelbrot set $\ensuremath{\mathcal{M}}$ is the bifurcation diagram for the quadratic family.



The Mandelbrot set





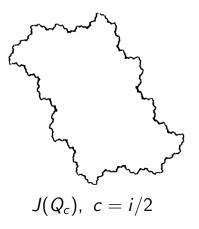


The main cardioid and the period 2 bulb

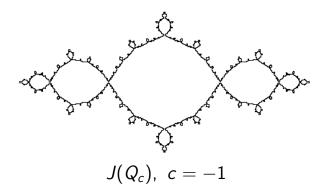
Theorem 1 For any *c* within the main cardioid, the Julia set $J(Q_c)$ is a simple closed curve.

The region bounded by this curve is the basin of attraction of an attracting fixed point.

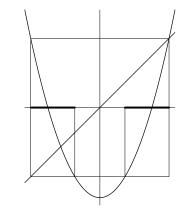
If $c \notin \mathbb{R}$ then $J(Q_c)$ contains no smooth arc.



Theorem 2 For any *c* within the period 2 bulb, $J(Q_c)$ is the closure of countably many simple closed curves. The interior of $K(Q_c)$ has countably many connected components and coincides with the basin of attraction of an attracting periodic orbit of period 2.



Theorem 3 For any $c \notin M$, the Julia set $J(Q_c)$ is a Cantor set and the restriction of Q_c to $J(Q_c)$ is conjugate to the one-sided shift on two letters.



 Q_c , c < -2. $J(Q_c) = K(Q_c)$ is a Cantor set.