MATH 614 Dynamical Systems and Chaos Lecture 32: The Julia and Fatou sets.

The Julia set

Suppose $P: U \to U$ is a holomorphic map, where U is a domain in \mathbb{C} , the entire plane \mathbb{C} , or the Riemann sphere $\overline{\mathbb{C}}$.

Definition. The **Julia set** J(P) of P is the closure of the set of repelling periodic points of P.

Examples. •
$$L_2(z) = 2z$$
.
 $J(L_2) = \{0\}$.
• $L_{1/2}(z) = z/2$.
 $J(L_{1/2}) = \{\infty\}$ since $L_{1/2} = H \circ L_2 \circ H^{-1}$, where $H(z) = 1/z$
• $L_{1,1}(z) = z + 1$.
 $J(L_{1,1}) = \emptyset$.
• $Q_0(z) = z^2$.
 $J(Q_0) = \{z \in \mathbb{C} : |z| = 1\}$.
• $Q_{-2}(z) = z^2 - 2$.
 $J(Q_{-2}) = [-2, 2]$. Note that $Q_{-2}(2 \cos \alpha) = 2 \cos(2\alpha)$.

Invariance

Proposition 1 The Julia set of a holomorphic map $P: U \rightarrow U$ is invariant: $P(J(P)) \subset J(P)$.

Proof: Let $z \in J(P)$. There are repelling periodic points z_1, z_2, \ldots of P such that $z_n \to z$ as $n \to \infty$. By continuity, $P(z_n) \to P(z)$ as $n \to \infty$. Clearly, $P(z_1), P(z_2), \ldots$ are also repelling periodic points of P.

Proposition 2 P(J(P)) = J(P).

Proof: Let $z \in J(P)$ and $z_n \to z$ as $n \to \infty$, where z_1, z_2, \ldots are repelling periodic points of P. Then there are repelling periodic points w_1, w_2, \ldots such that $P(w_n) = z_n$. The sequence w_1, w_2, \ldots is bounded, hence there is a converging subsequence: $w_{n_k} \to w$ as $k \to \infty$. Then $z_{n_k} = P(w_{n_k}) \to P(w)$. We have $w \in J(P)$ and P(w) = z. *Remark.* This argument is incomplete.

Normal family

Let \mathcal{F} be a collection of holomorphic functions $F: U \to \mathbb{C}$ defined in a domain $U \subset \mathbb{C}$.

Definition. The collection \mathcal{F} is a **normal family** in U if every sequence F_1, F_2, \ldots of functions from \mathcal{F} has a subsequence F_{n_1}, F_{n_2}, \ldots $(1 \le n_1 < n_2 < \ldots)$ which either (i) converges uniformly on compact subsets of U, or (ii) converges uniformly to ∞ on U.

The condition (i) means that there exists a function $f: U \to \mathbb{C}$ such that for any compact set $D \subset U$ we have

$$\sup_{z\in D}|F_{n_k}(z)-f(z)|\to 0 \text{ as } k\to\infty.$$

The function f is going to be continuous.

The condition (ii) means that for any R > 0 there exists an integer K > 0 such that $|F_{n_k}(z)| > R$ for all $k \ge K$ and $z \in U$.

The Fatou set

Let \mathcal{F} be a collection of holomorphic functions defined in a domain $U \subset \overline{\mathbb{C}}$.

We say that the collection \mathcal{F} is **normal at** a finite point $z \in U$ if it is a normal family in some neighborhood of z. In the case $\infty \in U$, we say \mathcal{F} is **normal at infinity** if the collection of functions $G(z) = F(1/z), \ F \in \mathcal{F}$ is normal at 0.

Definition. The **Fatou set** S(P) of a holomorphic map $P: U \to U$ is the set of all points $z \in U$ such that the family of iterates $\{P^n\}_{n\geq 1}$ is normal at z. By definition, the Fatou set is open. Let \mathcal{F} be a collection of holomorphic functions defined in a domain $U \subset \overline{\mathbb{C}}$.

Theorem (Arzelà-Ascoli) Suppose the functions in \mathcal{F} are uniformly bounded and their derivatives are uniformly bounded.

Then any sequence F_1, F_2, \ldots of functions from \mathcal{F} has a subsequence F_{n_1}, F_{n_2}, \ldots which converges uniformly on compact subsets of U.

Corollary If the iterates of a holomorphic transformation P and their derivatives are uniformly bounded in a neighborhood of a point z, then $z \in S(P)$.

Theorem (Weierstrass) Let F_1, F_2, \ldots be holomorphic functions in a domain U. Assume that the sequence F_1, F_2, \ldots converges uniformly on compact subsets of U.

Then the limit function F is holomorphic in U and, moreover, the sequence of derivatives F'_1, F'_2, \ldots converges to F' uniformly on compact subsets of U.

Corollary Let $z \in \mathbb{C}$. Assume that there exists a sequence of iterates P^{n_1}, P^{n_2}, \ldots such that $P^{n_k}(z) \not\rightarrow \infty$ while $(P^{n_k})'(z) \rightarrow \infty$ as $k \rightarrow \infty$. Then $z \notin S(P)$.

The Fatou set and periodic points

Proposition 1 Attracting periodic points of P belong to S(P).

Proof: Suppose z_0 is an attracting periodic point of period *n*. Then $P^n(z_0) = z_0$ and $|P^n(z) - z_0| \le \mu |z - z_0|$ for some $0 < \mu < 1$ and all *z* close enough to z_0 . Hence there is a neighborhood *D* of z_0 such that the functions $P^n, P^{2n}, P^{3n}, \ldots$ converge to the constant z_0 uniformly on *D*. Then for any integer $k \ge 1$ the functions $P^{n+k}, P^{2n+k}, P^{3n+k}, \ldots$ converge to the constant $P^k(z_0)$ uniformly on *D*.

It follows that the sequence P, P^2, P^3, \ldots is normal at z_0 .

The Fatou set and periodic points

Proposition 2 Repelling periodic points of P do not belong to S(P).

Proof: Suppose z is a repelling periodic point of period n. Then $P^n(z) = z$ and $|(P^n)'(z)| > 1$. For any integer $k \ge 1$ we have $P^{nk}(z) = z$ and $(P^{nk})'(z) = ((P^n)'(z))^k$. As a consequence, $P^{nk}(z) \not\rightarrow \infty$ while $(P^{nk})'(z) \rightarrow \infty$ as $k \rightarrow \infty$. By the above, $z \notin S(P)$.

Corollary The Julia set and the Fatou set of *P* are disjoint.

The Fatou set and periodic points

Neutral periodic points of P may or may not belong to S(P).

Examples. •
$$P(z) = e^{i\alpha}z$$
, where $\alpha \in \mathbb{R}$.

The neutral fixed point 0 belongs to the Fatou set S(P). Indeed, $P^n(z) = e^{in\alpha}z$ and $(P^n)'(z) = e^{in\alpha}$ for all $z \in \mathbb{C}$ and n = 1, 2, ... Therefore all iterates of P and their derivatives are uniformly bounded in a neighborhood of 0.

•
$$P(z) = z + z^2$$
.

The neutral fixed point 0 does not belong to the Fatou set S(P). Indeed, for any ε , $0 < \varepsilon < 1$, we have $P^n(-\varepsilon) \to 0$ as $n \to \infty$ while $P^n(\varepsilon) \to \infty$ as $n \to \infty$. It follows that the iterates of P are not normal at 0.

Invariance

Proposition The Fatou set of *P* is completely invariant under this map: $P(S(P)) \subset S(P)$ and $P^{-1}(S(P)) \subset S(P)$.

Proof: Suppose P(w) = z. We have to show that the family P, P^2, P^3, \ldots is normal at z if and only if it is normal at w.

Indeed, let f be a nonconstant holomorphic function such that f(w) = z. Then P, P^2, P^3, \ldots is normal at z if and only if the family $P \circ f, P^2 \circ f, P^3 \circ f, \ldots$ is normal at w.