Dynamical Systems and Chaos Lecture 34:

MATH 614

The Fatou components.

The filled Julia set.

The Julia and Fatou sets

Suppose $P: U \to U$ is a holomorphic map, where U is a domain in \mathbb{C} , the entire plane \mathbb{C} , or the Riemann sphere $\overline{\mathbb{C}}$.

Definition. The **Julia set** J(P) of P is the closure (in U) of the set of repelling periodic points of P. The **Fatou set** S(P) of P is the set of all points $z \in U$ such that the family of iterates $\{P^n\}_{n\geq 1}$ is normal at z.

- $J(P) \cap S(P) = \emptyset$ and $J(P) \cup S(P) = U$. • P(J(P)) = J(P) and $P^{-1}(J(P)) = J(P)$.
- $P(S(P)) \subset S(P)$ and $P^{-1}(S(P)) = S(P)$.
- If $U \subset \mathbb{C}$ and $\mathbb{C} \setminus U$ contains at least two points, then S(P) = U and $J(P) = \emptyset$.
- If $S(P) \neq \emptyset$, then the Julia set has empty interior.
- If the Julia set is more than one repelling orbit, then it has no isolated points.
- If the Julia set is more than one repelling orbit, then the map P is chaotic on J(P).

The Fatou components

The Fatou set S(P) of a nonconstant holomorphic map $P: U \to U$ is open. Connected components of this set are called the **Fatou components** of P.

- For any Fatou component D of P, the image P(D) is also a Fatou component of P.
- For any Fatou component D of a rational function P there exist integers $k \ge 0$ and $n \ge 1$ such that the Fatou component $P^k(D)$ is invariant under P^n (Sullivan 1986).
- Some transcendental functions P admit a Fatou component D that is a **wandering domain**, i.e., $D, P(D), P^2(D), \ldots$ are disjoint sets.

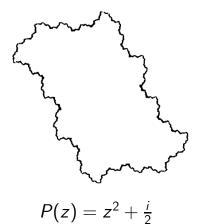
The Fatou components

There are 5 types of invariant Fatou components for a holomorphic map $P: U \rightarrow U$:

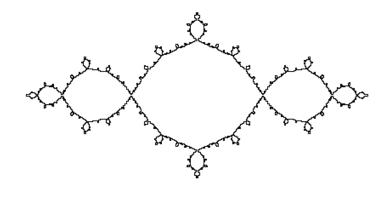
- immediate basin of attraction of an attracting fixed point lying inside the component;
- attracting petal of a neutral fixed point lying on the boundary of the component;
- **Siegel disc**: the restriction of *P* to the component is holomorphically conjugate to a rotation of a disc;
- **Herman ring**: the restriction of *P* to the component is holomorphically conjugate to a rotation of an annulus;
- **Baker domain**: the iterates of P converge (uniformly on compact subsets of the component) to a constant $z_0 \notin U$ that is an essential singularity of P.

The Baker domains cannot occur for a rational function P. The Herman rings cannot occur for functions $P: \mathbb{C} \to \mathbb{C}$.

Basin of attraction

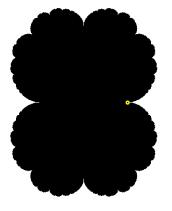


Basin of attraction



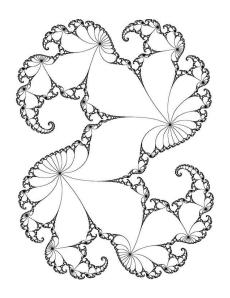
 $P(z)=z^2-1$

Attracting petal

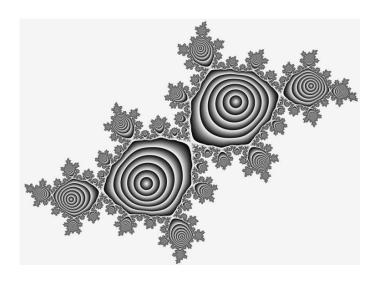


 $P(z)=z^2+\tfrac{1}{4}$

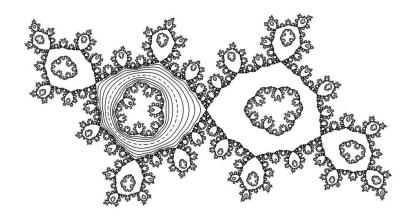
Attracting petals



Siegel disc



Herman ring



Polynomial maps

From now on, we assume that P is a polynomial map with $\deg P \geq 2$:

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0,$$

where $a_n \neq 0$, $n \geq 2$. We consider P as a transformation of $\overline{\mathbb{C}}$.

Proposition The point at infinity is a super-attracting fixed point of P.

Proof: Clearly, $P(\infty)=\infty$. To find the derivative $P'(\infty)$, we need to compute the derivative R'(0) of a rational function R(z)=1/P(1/z). Since $P(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0$, it follows that $R(z)=z^n/(a_n+a_{n-1}z+\cdots+a_1z^{n-1}+a_0z^n)$. Since $a_n\neq 0$ and $n\geq 2$, we obtain that R'(0)=0.

The filled Julia set

Definition. The **filled Julia set** of the polynomial P, denoted K(P), is the set of all points $z \in \mathbb{C}$ such that the orbit $z, P(z), P^2(z), \ldots$ is bounded.

Proposition 1 The complement of K(P) consists of points whose orbits escape to infinity.

Proposition 2 There is $R_0 > 0$ such that the set $\{z \in \mathbb{C} : |z| > R_0\}$ is contained in the Fatou set.

Proposition 3 The Julia set and the filled Julia set are bounded.

Proposition 4 The Julia set is contained in the filled Julia set.

More properties of the filled Julia set

- The filled Julia set is completely invariant: $P(K(P)) \subset K(P)$ and $P^{-1}(K(P)) \subset K(P)$.
- The complement of the filled Julia set is contained in the Fatou set.
 - The filled Julia set is closed.
 - The filled Julia set is nonempty.
- The interior of the filled Julia set is contained in the Fatou set.