# MATH 614 Dynamical Systems and Chaos Lecture 36: Invariant measure.

## **Ergodic theory**

Topological dynamics is the study of continuous transformations.

Smooth dynamics is the study of smooth transformations.

Holomorphic dynamics is the study of holomorphic transformations.

**Ergodic theory** (a.k.a. metric theory of dynamical systems) is the study of **measure-preserving** transformations.

The **measure** is an abstract concept that generalizes the notions of length, area, and volume.

## **Examples**

• Bijective self-map  $F: X \to X$ .

Any set  $E \subset X$  is mapped onto a set with the same number of elements.

• Translation of the real line.  $F : \mathbb{R} \to \mathbb{R}, \ F(x) = x + x_0$ . Any interval is mapped onto an interval of the same length.

• Rotation of the circle.



Any arc is mapped onto an arc of the same length.

## Non-continuous example

• Interval exchange transformation.



An **interval exchange transformation**  $F: I \rightarrow I$  of an interval I is defined by cutting the interval into several subintervals and then rearranging them by translation. The image of any subinterval  $I_0 \subset I$  consists of one or several intervals whose total length equals the length of  $I_0$ .

Note that the transformation F is not well defined at the cutting points. Consequently, the orbit under F is not defined for a finite or countable set of points which may be dense in I. However this is not a concern as in ergodic theory sets of zero measure can be neglected.

• Motion of the Euclidean plane.

Any domain is mapped onto a domain of the same area.

• Linear transformation  $L : \mathbb{R}^2 \to \mathbb{R}^2$ .  $L(\mathbf{x}) = A\mathbf{x}$ , where A is a 2×2 matrix. The image of any domain of area  $\alpha$  has area  $\alpha$  |det A|. In the case det  $A = \pm 1$ , the map L is area-preserving.

• Translation of the torus.  $F: \mathbb{T}^2 \to \mathbb{T}^2$ ,  $F(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$ . This is the quotient of a translation of the Euclidean plane under the natural projection  $\pi: \mathbb{R}^2 \to \mathbb{T}^2$ .

#### • Toral automorphism.

 $F: \mathbb{T}^2 \to \mathbb{T}^2$  ( $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ ),  $F(\mathbf{x}) = A\mathbf{x}$ , where A is a 2×2 matrix with integer entries and det  $A = \pm 1$ . This is the quotient of an area-preserving linear map under the natural projection  $\pi: \mathbb{R}^2 \to \mathbb{T}^2$ .

#### Example with continuous time

• Area-preserving flow.

Consider an autonomous system of two ordinary differential equations of the first order

$$\begin{cases} \dot{x} = g_1(x, y), \\ \dot{y} = g_2(x, y), \end{cases}$$

where  $g_1, g_2$  are differentiable functions defined in a domain  $D \subset \mathbb{R}^2$ . In vector form,  $\dot{\mathbf{v}} = G(\mathbf{v})$ , where  $G : D \to \mathbb{R}^2$  is a vector field. Assume that for any  $\mathbf{x} \in D$  the initial value problem  $\dot{\mathbf{v}} = G(\mathbf{v})$ ,  $\mathbf{v}(0) = \mathbf{x}$  has a unique solution  $\mathbf{v}_{\mathbf{x}}(t)$ ,  $t \in \mathbb{R}$ . Then the system of ODEs gives rise to a dynamical system with continuous time  $F^t : D \to D$ ,  $t \in \mathbb{R}$  defined by  $F^t(\mathbf{x}) = \mathbf{v}_{\mathbf{x}}(t)$  for all  $\mathbf{x} \in D$  and  $t \in \mathbb{R}$ .

The flow  $\{F^t\}$  is area-preserving if and only if  $\nabla \cdot G = \partial g_1 / \partial x + \partial g_2 / \partial y = 0$  in *D*.

## Non-invertible example





If  $S^1 = \mathbb{R}/\mathbb{Z}$ , then F(x) = 2x for all  $x \in S^1$ . For any arc  $\gamma = (\omega_1, \omega_2)$ ,  $0 \le \omega_1 < \omega_2 \le 1$ , of length  $\alpha = \omega_2 - \omega_1$  the image  $F(\gamma)$  is an arc of length  $2\alpha$  or the entire circle. However the preimage  $F^{-1}(\gamma)$  consists of two disjoint arcs  $(\frac{1}{2}\omega_1, \frac{1}{2}\omega_2)$  and  $(\frac{1}{2}\omega_1 + \frac{1}{2}, \frac{1}{2}\omega_2 + \frac{1}{2})$  of length  $\alpha/2$  so that  $F^{-1}(\gamma)$  has the same length measure as  $\gamma$ .

## Measure-preserving transformation

Definition. A **measured space** is a triple  $(X, \mathcal{B}, \mu)$ , where X is a set,  $\mathcal{B}$  is a collection of subsets of X, and  $\mu$  is a function  $\mu : \mathcal{B} \to [0, \infty]$ . Elements of  $\mathcal{B}$  are referred to as **measurable sets**. The function  $\mu$  is called the **measure** on X.

A mapping  $T : X \to X$  is called **measurable** if preimage of any measurable set under T is also measurable:  $E \in \mathcal{B} \implies T^{-1}(E) \in \mathcal{B}$ .

A measurable mapping  $T : X \to X$  is called **measure-preserving** if for any  $E \in \mathcal{B}$  one has  $\mu(T^{-1}(E)) = \mu(E)$ .

## Algebra of sets

*Definition.* A collection  $\mathcal{B}$  of subsets of a set X is called an **algebra** of sets if  $\mathcal{B}$  is closed under taking unions  $B_1 \cup B_2$ , intersections  $B_1 \cap B_2$ , complements  $X \setminus B$ , and if  $\mathcal{B}$  contains the empty set and the entire set X.

The algebra  $\mathcal{B}$  is also closed under taking finite unions  $B_1 \cup B_2 \cup \cdots \cup B_n$ , finite intersections  $B_1 \cap B_2 \cap \cdots \cap B_n$ , set differences  $B_1 \setminus B_2 = B_1 \cap (X \setminus B_2)$ , and symmetric differences  $B_1 \triangle B_2 = (B_1 \setminus B_2) \cup (B_2 \setminus B_1)$ .

For any subset  $B \subset X$  let  $\chi_B : X \to \{0,1\}$  denote the characteristic function of  $B: \chi_B(x) = 1$  if  $x \in B$  and  $\chi_B(x) = 0$  otherwise. Then  $\chi_X = 1$ ,  $\chi_{\emptyset} = 0$ ,  $\chi_{B_1 \cap B_2} = \chi_{B_1} \chi_{B_2}$ ,  $\chi_{B_1 \cup B_2} = \chi_{B_1} + \chi_{B_2}$  if  $B_1 \cap B_2 = \emptyset$ ,  $\chi_{B_1 \setminus B_2} = \chi_{B_1} - \chi_{B_2}$  if  $B_2 \subset B_1$ , and  $\chi_{B_1 \triangle B_2} = \chi_{B_1} + \chi_{B_2} \mod 2$ .

## $\sigma$ -algebra

A standard requirement for a measured space  $(X, \mathcal{B}, \mu)$  is that  $\mathcal{B}$  be a  $\sigma$ -algebra.

Definition. An algebra of sets is called a  $\sigma$ -algebra if it is closed under taking countable unions.

Examples of  $\sigma$ -algebras: • { $\emptyset$ , X};

- all subsets of  $X(2^X)$ ;
- all finite and countable subsets of X and their complements.

**Proposition** Given a collection S of subsets of X, there exists a minimal  $\sigma$ -algebra of subsets of X that contains S.

Suppose X is a topological space. The **Borel**  $\sigma$ -algebra  $\mathcal{B}(X)$  is the minimal  $\sigma$ -algebra that contains all open subsets of X. Elements of  $\mathcal{B}(X)$  are called **Borel sets**. A mapping  $F: X \to X$  is measurable relative to  $\mathcal{B}(X)$  if and only if the preimage of any open set is Borel. In particular, each continuous map is measurable.

#### $\sigma$ -additive measure

Definition. Suppose  $\mathcal{B}$  is an algebra of subsets of a set X. A function  $\mu : \mathcal{B} \to [0, \infty]$  is an **additive measure** if  $\mu(\emptyset) = 0$  and, for any disjoint sets  $A_1, A_2, \ldots, A_n \in \mathcal{B}$ ,

$$\mu\left(\bigcup_{k=1}^n A_k\right) = \sum_{k=1}^n \mu(A_k).$$

In the case  $\mathcal{B}$  is a  $\sigma$ -algebra, the additive measure  $\mu$  is  $\sigma$ -additive if for any disjoint sets  $A_1, A_2, \ldots$  from  $\mathcal{B}$ ,

$$\mu\left(\bigcup_{k=1}^{\infty}A_k\right)=\sum_{k=1}^{\infty}\mu(A_k).$$

The measure  $\mu$  is **finite** if  $\mu(X) < \infty$ .  $\mu$  is  $\sigma$ -finite if  $X = \bigcup_{k=1}^{\infty} X_k$ , where  $\mu(X_k) < \infty$  for all k.

Another standard requirement for a measured space  $(X, \mathcal{B}, \mu)$  is that  $\mu$  be a  $\sigma$ -additive measure and also be finite or  $\sigma$ -finite.

Definition. A normalized invariant **mean** on  $\mathbb{Z}$  is a function  $\mathfrak{m}: 2^{\mathbb{Z}} \to [0, \infty)$  such that

•  $\mathfrak{m}(\emptyset) = 0$ ,  $\mathfrak{m}(\mathbb{Z}) = 1$ ;

• if  $A_1, A_2, \ldots, A_k$  are disjoint subsets of  $\mathbb{Z}$  then  $\mathfrak{m}(A_1 \cup \cdots \cup A_k) = \mathfrak{m}(A_1) + \cdots + \mathfrak{m}(A_k);$ 

•  $\mathfrak{m}(n+S) = \mathfrak{m}(S)$  for all  $n \in \mathbb{Z}$  and  $S \subset \mathbb{Z}$ .

The mean  $\mathfrak{m}$  is a finite, additive measure on  $\mathbb{Z}$ . Note that  $\mathfrak{m}(\{n\})$  is the same for all  $n \in \mathbb{Z}$ . Since  $\mathfrak{m}(\mathbb{Z}) < \infty$ , it follows that  $\mathfrak{m}(\{n\}) = 0$ . Besides, it follows that  $\mathfrak{m}$  is not  $\sigma$ -additive.

**Theorem (Banach)** There exists a normalized invariant mean on  $\mathbb{Z}$ .

That is, the group  $\mathbb{Z}$  is **amenable**.