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Dynamical Systems and Chaos

Lecture 37:
Ergodic theorems.

Ergodicity.



Measure-preserving transformation

Definition. A measured space is a triple
(X ,B, µ), where X is a set, B is a σ-algebra of
(measurable) subsets of X , and µ : B → [0,∞] is a

σ-additive measure on X (finite or σ-finite).

A mapping T : X → X is called measurable if
preimage of any measurable set under T is also

measurable: E ∈ B =⇒ T−1(E ) ∈ B.

A measurable mapping T : X → X is called
measure-preserving if for any E ∈ B one has

µ(T−1(E )) = µ(E ).



Borel sets

Proposition Given a collection S of subsets of X ,

there exists a minimal σ-algebra of subsets of X
that contains S .

Suppose X is a topological space. The Borel

σ-algebra B(X ) is the minimal σ-algebra that
contains all open subsets of X . Elements of B(X )

are called Borel sets.

A mapping F : X → X is measurable relative to
B(X ) if and only if the preimage of any open set is

Borel. In particular, each continuous map is
measurable.



Recurrence

(X ,B, µ): measured space

T : X → X : measure-preserving mapping

Let E be a measurable subset of X . A point x ∈ E

is called recurrent if T n(x) ∈ E for some n ≥ 1.

A point x ∈ E is called infinitely recurrent if the
orbit x ,T (x),T 2(x), . . . visits E infinitely many
times.

Theorem (Poincaré 1890) Suppose µ is a finite

measure. Then almost all points of E are infinitely
recurrent.



Lemma 1 Suppose µ is a finite measure and µ(E ) > 0.
Then there exists a recurrent point x ∈ E .

Proof: Let E0 = E , E1 = T−1(E ), E2 = T−1(E1) = T−2(E ),
. . . , En = T−1(En−1) = T−n(E ), . . . Suppose En ∩ Em 6= ∅
for some n and m, 0 ≤ n < m. Take any point x ∈ En ∩ Em

and let y = T n(x). Since T n(x),Tm(x) ∈ E , it follows that
y ∈ E and Tm−n(y ) ∈ E , hence y is a recurrent point.

Now assume that sets E0,E1,E2, . . . are disjoint.
Since T preserves measure, we have µ(En+1) = µ(En)
for all n ≥ 0 so that µ(En) = µ(E ) > 0 for all n.
Then µ(E0 ∪ E1 ∪ E2 ∪ . . . ) = ∞, a contradiction.

Lemma 2 Suppose µ is a finite measure. Then almost all
points of E are recurrent.

Proof: Let E∞ denote the set of all non-recurrent points of E .
This set is measurable: E∞ = E \

(

T−1(E ) ∪ T−2(E ) ∪ . . .
)

.
Clearly, no points of E∞ are recurrent (relative to E∞). By
Lemma 1, µ(E∞) = 0.



Individual ergodic theorem

Let (X ,B, µ) be a measured space and T : X → X

be a measure-preserving transformation.

Birkhoff’s Ergodic Theorem For any function
f ∈ L1(X , µ), the limit

lim
n→∞

1

n

n−1
∑

k=0

f (T k(x)) = f ∗(x)

exists for almost all x ∈ X . The function f ∗ is
T -invariant, i.e., f ∗ ◦ T = f ∗ almost everywhere.
If µ is finite then f ∗ ∈ L1(X , µ) and

∫

X

f ∗ dµ =

∫

X

f dµ.



Ergodicity

Let (X ,B, µ) be a measured space and T : X → X be a
measure-preserving transformation.

We say that a measurable set E ⊂ X is invariant under T if
µ(E4T−1(E )) = 0, that is, if E = T−1(E ) up to a set of
zero measure. In particular, if T (E ) ⊂ E then E ⊂ T−1(E )
so that µ(E4T−1(E )) = µ(T−1(E ) \ E ) = 0.

Note that there is a measurable set E0 ⊂ E such that
µ(E4E0) = 0 and T−1(E0) = E0. Namely, let
E1 = E ∪ T−1(E ) ∪ T−2(E ) ∪ . . . . Then E ⊂ E1,
µ(E1 \ E ) = 0, µ(E14T−1(E1)) = 0, and T−1(E1) ⊂ E1.
Now E0 = E1 ∩ T−1(E1) ∩ T−2(E1) ∩ . . .

Definition. The transformation T is called ergodic with
respect to µ if any T -invariant measurable set E has either
zero or full measure: µ(E ) = 0 or µ(X \ E ) = 0.



Birkhoff’s Ergodic Theorem (ergodic case)

Suppose µ is finite and T is ergodic. Given
f ∈ L1(X , µ), for almost all x ∈ X we have

lim
n→∞

1

n

n−1
∑

k=0

f (T k(x)) =
1

µ(X )

∫

X

f dµ.

(time average is equal to space average)

In the case f = χE (E ∈ B), we obtain

lim
n→∞

#{0 ≤ k ≤ n − 1 | T k(x) ∈ E}

n
=

µ(E )

µ(X )
.

(almost every orbit is uniformly distributed)



Koopman’s operator

(X ,B, µ): measured space
T : X → X : measure-preserving transformation

To any function f : X → C we assign another

function Uf defined by (Uf )(x) = f (T (x)) for all
x ∈ X .

Linear functional operator U : f 7→ Uf .

Proposition If f is integrable then so is Uf .
Moreover,

∫

X

Uf dµ =

∫

X

f (T (x)) dµ(x) =

∫

X

f dµ.



f ∈ L2(X , µ) means that
∫

X
|f |2 dµ < ∞.

L2(X , µ) is a Hilbert space with respect to the inner product

(f , g) =

∫

X

f (x)g(x) dµ(x).

Let T be a measure-preserving transformation and U be the
associated operator, Uf = f ◦ T .

Then U(L2(x , µ)) ⊂ L2(X , µ). Furthermore,

(Uf ,Ug) = (f , g)

for all f , g ∈ L2(X , µ).

That is, U is an isometric operator on the Hilbert space
L2(X , µ). If T is invertible and T−1 is also
measure-preserving, then U is a unitary operator.



Mean ergodic theorem

von Neumann’s Ergodic Theorem Suppose U is
an isometric operator in a Hilbert space H. Then
for any f ∈ H,

lim
n→∞

1

n

n−1
∑

k=0

Ukf = f ∗ (in H),

where f ∗ ∈ H is the orthogonal projection of f on

the subspace of U-invariant functions in H.

Namely, Uf ∗ = f ∗ and (f − f ∗, g) = 0 for any
element g ∈ H such that Ug = g .



If U is associated to a measure-preserving map T : X → X ,
then for any f ∈ L2(X , µ) we have

lim
n→∞

∫

X

∣

∣

∣

1

n

∑n−1

k=0
Uk f − f ∗

∣

∣

∣

2

dµ → 0,

where f ∗ ∈ L2(X , µ) and Uf ∗ = f ∗.

Lemma T is ergodic if and only if Uf = f for a measurable
function f implies f is constant (almost everywhere).

If T is ergodic then

lim
n→∞

∫

X

∣

∣

∣

1

n

∑n−1

k=0
Uk f − c

∣

∣

∣

2

dµ → 0,

where

c =
1

µ(X )

∫

X

f dµ.



Rotations of the circle

Measured space (S1,B(S1), µ), where µ is the
length measure on S1.

Rα: rotation of the unit circle by angle α.
Rα is a measure-preserving homeomorphism.

Theorem If α is not commensurable with π, then

the rotation Rα is ergodic.



Let Uα be the associated operator on L2(S
1, µ).

Relative to the angular coordinate on S1, elements

of L2(S
1, µ) are 2π-periodic functions on R. The

inner product is given by

(f , g) =

∫

2π

0

f (x)g(x)dx .

The operator Uα acts as follows:

(Uαf )(x) = f (x + α), x ∈ R.



For any m ∈ Z let hm(x) = e imx , x ∈ R. Then
hm ∈ L2(S

1, µ) and Uαhm = e imαhm so that hm is

an eigenfunction of Uα. Note that {hm}m∈Z is an
orthogonal basis of the Hilbert space L2(X , µ). We

say that Uα has pure point spectrum.

Any f ∈ L2(X , µ) is uniquely expanded as

f =
∑

m∈Z
cmhm, (Fourier series)

where cm ∈ C. Then

Uαf =
∑

m∈Z
e imαcmhm.

Hence Uαf = f only if (e imα − 1)cm = 0 for all
m ∈ Z. That is, if f = c0, a constant.


