MATH 614

Dynamical Systems and Chaos

Lecture 37:
 Ergodic theorems. Ergodicity.

Measure-preserving transformation

Definition. A measured space is a triple
(X, \mathcal{B}, μ), where X is a set, \mathcal{B} is a σ-algebra of (measurable) subsets of X, and $\mu: \mathcal{B} \rightarrow[0, \infty]$ is a σ-additive measure on X (finite or σ-finite).

A mapping $T: X \rightarrow X$ is called measurable if preimage of any measurable set under T is also measurable: $E \in \mathcal{B} \Longrightarrow T^{-1}(E) \in \mathcal{B}$.

A measurable mapping $T: X \rightarrow X$ is called measure-preserving if for any $E \in \mathcal{B}$ one has $\mu\left(T^{-1}(E)\right)=\mu(E)$.

Borel sets

Proposition Given a collection S of subsets of X, there exists a minimal σ-algebra of subsets of X that contains S.

Suppose X is a topological space. The Borel σ-algebra $\mathcal{B}(X)$ is the minimal σ-algebra that contains all open subsets of X. Elements of $\mathcal{B}(X)$ are called Borel sets.

A mapping $F: X \rightarrow X$ is measurable relative to $\mathcal{B}(X)$ if and only if the preimage of any open set is Borel. In particular, each continuous map is measurable.

Recurrence

(X, \mathcal{B}, μ) : measured space $T: X \rightarrow X$: measure-preserving mapping
Let E be a measurable subset of X. A point $x \in E$ is called recurrent if $T^{n}(x) \in E$ for some $n \geq 1$.
A point $x \in E$ is called infinitely recurrent if the orbit $x, T(x), T^{2}(x), \ldots$ visits E infinitely many times.

Theorem (Poincaré 1890) Suppose μ is a finite measure. Then almost all points of E are infinitely recurrent.

Lemma 1 Suppose μ is a finite measure and $\mu(E)>0$. Then there exists a recurrent point $x \in E$.
Proof: Let $E_{0}=E, E_{1}=T^{-1}(E), E_{2}=T^{-1}\left(E_{1}\right)=T^{-2}(E)$,
$\ldots, E_{n}=T^{-1}\left(E_{n-1}\right)=T^{-n}(E), \ldots$ Suppose $E_{n} \cap E_{m} \neq \emptyset$
for some n and $m, 0 \leq n<m$. Take any point $x \in E_{n} \cap E_{m}$ and let $y=T^{n}(x)$. Since $T^{n}(x), T^{m}(x) \in E$, it follows that $y \in E$ and $T^{m-n}(y) \in E$, hence y is a recurrent point.
Now assume that sets $E_{0}, E_{1}, E_{2}, \ldots$ are disjoint.
Since T preserves measure, we have $\mu\left(E_{n+1}\right)=\mu\left(E_{n}\right)$ for all $n \geq 0$ so that $\mu\left(E_{n}\right)=\mu(E)>0$ for all n. Then $\mu\left(E_{0} \cup E_{1} \cup E_{2} \cup \ldots\right)=\infty$, a contradiction.

Lemma 2 Suppose μ is a finite measure. Then almost all points of E are recurrent.
Proof: Let E_{∞} denote the set of all non-recurrent points of E. This set is measurable: $E_{\infty}=E \backslash\left(T^{-1}(E) \cup T^{-2}(E) \cup \ldots\right)$. Clearly, no points of E_{∞} are recurrent (relative to E_{∞}). By Lemma 1, $\mu\left(E_{\infty}\right)=0$.

Individual ergodic theorem

Let (X, \mathcal{B}, μ) be a measured space and $T: X \rightarrow X$ be a measure-preserving transformation.
Birkhoff's Ergodic Theorem For any function $f \in L_{1}(X, \mu)$, the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k}(x)\right)=f^{*}(x)
$$

exists for almost all $x \in X$. The function f^{*} is T-invariant, i.e., $f^{*} \circ T=f^{*}$ almost everywhere.
If μ is finite then $f^{*} \in L_{1}(X, \mu)$ and

$$
\int_{X} f^{*} d \mu=\int_{X} f d \mu
$$

Ergodicity

Let (X, \mathcal{B}, μ) be a measured space and $T: X \rightarrow X$ be a measure-preserving transformation.

We say that a measurable set $E \subset X$ is invariant under T if $\mu\left(E \triangle T^{-1}(E)\right)=0$, that is, if $E=T^{-1}(E)$ up to a set of zero measure. In particular, if $T(E) \subset E$ then $E \subset T^{-1}(E)$ so that $\mu\left(E \triangle T^{-1}(E)\right)=\mu\left(T^{-1}(E) \backslash E\right)=0$.

Note that there is a measurable set $E_{0} \subset E$ such that $\mu\left(E \triangle E_{0}\right)=0$ and $T^{-1}\left(E_{0}\right)=E_{0}$. Namely, let $E_{1}=E \cup T^{-1}(E) \cup T^{-2}(E) \cup \ldots$. Then $E \subset E_{1}$,
$\mu\left(E_{1} \backslash E\right)=0, \mu\left(E_{1} \triangle T^{-1}\left(E_{1}\right)\right)=0$, and $T^{-1}\left(E_{1}\right) \subset E_{1}$. Now $E_{0}=E_{1} \cap T^{-1}\left(E_{1}\right) \cap T^{-2}\left(E_{1}\right) \cap \ldots$

Definition. The transformation T is called ergodic with respect to μ if any T-invariant measurable set E has either zero or full measure: $\mu(E)=0$ or $\mu(X \backslash E)=0$.

Birkhoff's Ergodic Theorem (ergodic case)
Suppose μ is finite and T is ergodic. Given $f \in L_{1}(X, \mu)$, for almost all $x \in X$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k}(x)\right)=\frac{1}{\mu(X)} \int_{X} f d \mu
$$

(time average is equal to space average)
In the case $f=\chi_{E}(E \in \mathcal{B})$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{0 \leq k \leq n-1 \mid T^{k}(x) \in E\right\}}{n}=\frac{\mu(E)}{\mu(X)}
$$

(almost every orbit is uniformly distributed)

Koopman's operator

(X, \mathcal{B}, μ) : measured space $T: X \rightarrow X$: measure-preserving transformation
To any function $f: X \rightarrow \mathbb{C}$ we assign another function Uf defined by $(U f)(x)=f(T(x))$ for all $x \in X$.
Linear functional operator $U: f \mapsto U f$.
Proposition If f is integrable then so is $U f$.
Moreover,

$$
\int_{X} U f d \mu=\int_{X} f(T(x)) d \mu(x)=\int_{X} f d \mu .
$$

$f \in L_{2}(X, \mu)$ means that $\int_{X}|f|^{2} d \mu<\infty$.
$L_{2}(X, \mu)$ is a Hilbert space with respect to the inner product

$$
(f, g)=\int_{X} f(x) \overline{g(x)} d \mu(x)
$$

Let T be a measure-preserving transformation and U be the associated operator, $U f=f \circ T$.
Then $U\left(L_{2}(x, \mu)\right) \subset L_{2}(X, \mu)$. Furthermore,

$$
(U f, U g)=(f, g)
$$

for all $f, g \in L_{2}(X, \mu)$.
That is, U is an isometric operator on the Hilbert space $L_{2}(X, \mu)$. If T is invertible and T^{-1} is also measure-preserving, then U is a unitary operator.

Mean ergodic theorem

von Neumann's Ergodic Theorem Suppose U is an isometric operator in a Hilbert space \mathcal{H}. Then for any $f \in \mathcal{H}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} U^{k} f=f^{*}(\text { in } \mathcal{H})
$$

where $f^{*} \in \mathcal{H}$ is the orthogonal projection of f on the subspace of U-invariant functions in \mathcal{H}.

Namely, $U f^{*}=f^{*}$ and $\left(f-f^{*}, g\right)=0$ for any element $g \in \mathcal{H}$ such that $U g=g$.

If U is associated to a measure-preserving map $T: X \rightarrow X$, then for any $f \in L_{2}(X, \mu)$ we have

$$
\lim _{n \rightarrow \infty} \int_{X}\left|\frac{1}{n} \sum_{k=0}^{n-1} U^{k} f-f^{*}\right|^{2} d \mu \rightarrow 0
$$

where $f^{*} \in L_{2}(X, \mu)$ and $U f^{*}=f^{*}$.
Lemma T is ergodic if and only if $U f=f$ for a measurable function f implies f is constant (almost everywhere).
If T is ergodic then

$$
\lim _{n \rightarrow \infty} \int_{X}\left|\frac{1}{n} \sum_{k=0}^{n-1} U^{k} f-c\right|^{2} d \mu \rightarrow 0
$$

where

$$
c=\frac{1}{\mu(X)} \int_{X} f d \mu
$$

Rotations of the circle

Measured space $\left(S^{1}, \mathcal{B}\left(S^{1}\right), \mu\right)$, where μ is the length measure on S^{1}.
R_{α} : rotation of the unit circle by angle α.
R_{α} is a measure-preserving homeomorphism.
Theorem If α is not commensurable with π, then the rotation R_{α} is ergodic.

Let U_{α} be the associated operator on $L_{2}\left(S^{1}, \mu\right)$.
Relative to the angular coordinate on S^{1}, elements of $L_{2}\left(S^{1}, \mu\right)$ are 2π-periodic functions on \mathbb{R}. The inner product is given by

$$
(f, g)=\int_{0}^{2 \pi} f(x) \overline{g(x)} d x
$$

The operator U_{α} acts as follows:

$$
\left(U_{\alpha} f\right)(x)=f(x+\alpha), \quad x \in \mathbb{R}
$$

For any $m \in \mathbb{Z}$ let $h_{m}(x)=e^{i m x}, x \in \mathbb{R}$. Then $h_{m} \in L_{2}\left(S^{1}, \mu\right)$ and $U_{\alpha} h_{m}=e^{i m \alpha} h_{m}$ so that h_{m} is an eigenfunction of U_{α}. Note that $\left\{h_{m}\right\}_{m \in \mathbb{Z}}$ is an orthogonal basis of the Hilbert space $L_{2}(X, \mu)$. We say that U_{α} has pure point spectrum.

Any $f \in L_{2}(X, \mu)$ is uniquely expanded as

$$
f=\sum_{m \in \mathbb{Z}} c_{m} h_{m}, \quad \text { (Fourier series) }
$$

where $c_{m} \in \mathbb{C}$. Then

$$
U_{\alpha} f=\sum_{m \in \mathbb{Z}} e^{i m \alpha} c_{m} h_{m}
$$

Hence $U_{\alpha} f=f$ only if $\left(e^{i m \alpha}-1\right) c_{m}=0$ for all $m \in \mathbb{Z}$. That is, if $f=c_{0}$, a constant.

