MATH 614 Dynamical Systems and Chaos Lecture 38: Ergodicity (continued). Mixing.

Ergodic theorems

Let (X, \mathcal{B}, μ) be a measured space and $T : X \to X$ be a measure-preserving transformation.

Birkhoff's Ergodic Theorem For any function $f \in L_1(X, \mu)$, the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^{k}(x)) = f^{*}(x)$$

exists for almost all $x \in X$. The function f^* is *T*-invariant, i.e., $f^* \circ T = f^*$ almost everywhere.

von Neumann's Ergodic Theorem For any function $f \in L_2(X, \mu)$, the above limit exists in the Hilbert space $L_2(X, \mu)$. Moreover, f^* is the orthogonal projection of f on the subspace of functions invariant under Koopman's operator $U: L_2(X, \mu) \rightarrow L_2(X, \mu)$, $Uf = f \circ T$.

Remark. If $f \in L_1(X, \mu) \cap L_2(X, \mu)$, then the limit function f^* is the same in both theorems.

Ergodicity

Let (X, \mathcal{B}, μ) be a measured space and $T : X \to X$ be a measure-preserving transformation.

Definition. The transformation T is called **ergodic** with respect to μ if any T-invariant measurable set E has either zero or full measure: $\mu(E) = 0$ or $\mu(X \setminus E) = 0$.

Theorem The following conditions are equivalent:

• *T* is ergodic;

• for any sets $A, B \subset X$ of positive measure there exists an integer n > 0 such that $T^n(A) \cap B \neq \emptyset$;

• for any sets $A, B \subset X$ of positive measure there exists an integer n > 0 such that $\mu(A \cap T^{-n}(B)) > 0$;

• any measurable function $f : X \to \mathbb{C}$ invariant under T (that is, $f \circ T = f$ almost everywhere) is constant μ -a.e.;

• any function $f \in L_2(X, \mu)$ invariant under T is constant almost everywhere.

Rotations of the circle

Measured space $(S^1, \mathcal{B}(S^1), \mu)$, where μ is the length measure on S^1 .

 R_{α} : rotation of the unit circle by angle α . R_{α} is a measure-preserving homeomorphism.

Theorem If α is not commensurable with π , then the rotation R_{α} is ergodic.

Let U_{α} be the associated operator on $L_2(S^1, \mu)$. Relative to the angular coordinate on S^1 , elements of $L_2(S^1, \mu)$ are 2π -periodic functions on \mathbb{R} . The inner product is given by

$$(f,g)=\int_0^{2\pi}f(x)\overline{g(x)}\,dx.$$

The operator U_{α} acts as follows: $(U_{\alpha}f)(x) = f(x + \alpha), \ x \in \mathbb{R}.$ For any $m \in \mathbb{Z}$ let $h_m(x) = e^{imx}$, $x \in \mathbb{R}$. Then $h_m \in L_2(S^1, \mu)$ and $U_\alpha h_m = e^{im\alpha} h_m$ so that h_m is an eigenfunction of U_α . Note that $\{h_m\}_{m \in \mathbb{Z}}$ is an orthogonal basis of the Hilbert space $L_2(X, \mu)$. We say that U_α has **pure point spectrum**.

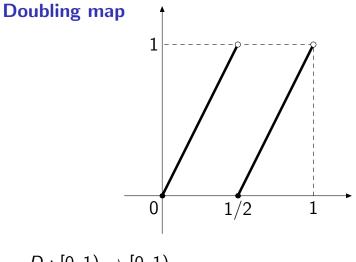
Any $f \in L_2(X, \mu)$ is uniquely expanded as

$$f = \sum_{m \in \mathbb{Z}} c_m h_m$$
, (Fourier series)

where $c_m \in \mathbb{C}$. Then

$$U_{lpha}f=\sum_{m\in\mathbb{Z}}e^{imlpha}c_mh_m.$$

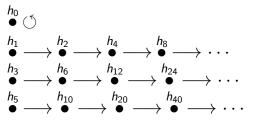
Hence $U_{\alpha}f = f$ only if $(e^{im\alpha} - 1)c_m = 0$ for all $m \in \mathbb{Z}$. That is, if $f = c_0$, a constant.



$$egin{array}{lll} D:[0,1) o [0,1),\ D(x)=2x egin{array}{lll} {
m mod} \ 1, \ x\in [0,1). \end{array}$$

Theorem The doubling map is ergodic.

Sketch of the proof: We know that functions $h_n(x) = e^{inx}$, form an orthogonal basis of the Hilbert space $L_2(S^1, \mu)$. Koopman's operator U of the doubling map acts on them as follows:



Any $f \in L_2(X, \mu)$ is uniquely expanded into a Fourier series $f = \sum_{m \in \mathbb{Z}} c_m h_m$, where $c_m \in \mathbb{C}$. Then $Uf = \sum_{m \in \mathbb{Z}} c_m U(h_m) = \sum_{m \in \mathbb{Z}} c_m h_{2m}$.

Hence Uf = f only if $c_{2m} = c_m$ for all $m \in \mathbb{Z}$ and $c_m = 0$ for all odd integers m. That is, if $f = c_0$, a constant.

Theorem Any hyperbolic toral automorphism T_A of the flat torus is ergodic.

Proof: Let $f : \mathbb{T}^2 \to \mathbb{C}$ be a continuous function. By Birkhoff's Ergodic Theorem, for almost all $x \in \mathbb{T}^2$: $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T_A^k(x)) = f^*(x),$

where f^* is an integrable function. Also, for almost all $x \in \mathbb{T}^2$: $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T_A^{-k}(x)) = f^{**}(x),$

where f^{**} is an integrable function.

von Neumann's Ergodic Theorem implies that $f^* = f^{**}$ almost everywhere.

Let
$$x \in \mathbb{T}^2$$
 and $y \in W^s(x)$. Then
 $\operatorname{dist}(T^n_A(y), T^n_A(x)) \to 0$ as $n \to \infty$.
Since f is continuous, it follows that
 $|f(T^n_A(y)) - f(T^n_A(x))| \to 0$ as $n \to \infty$.
Therefore $f^*(y) = f^*(x)$.
Similarly, if $y \in W^u(x)$ then $f^{**}(y) = f^{**}(x)$.
Thus f^* is constant along leaves of the stable

foliation while f^{**} is constant along leaves of the unstable foliation. Since $f^* = f^{**}$ a.e., it follows that f^* is constant almost everywhere.

Mixing

 (X, \mathcal{B}, μ) : measured space of finite measure $T : X \to X$: measure-preserving transformation T is called **mixing** if for any measurable sets $A, B \subset X$ we have

$$\lim_{n\to\infty}\mu(T^{-n}(A)\cap B)=\frac{\mu(A)\mu(B)}{\mu(X)}.$$

Lemma Mixing \implies ergodicity.

Proof: Suppose $C \subset X$ is measurable and *T*-invariant. Then $T^{-n}(C) = C$ up to a set of zero measure. Therefore $\mu(T^{-n}(C) \cap C) = \mu(C)$. If *T* is mixing then $\mu(C) = \mu(C)\mu(C)/\mu(X)$, which implies

that $\mu(C) = 0$ or $\mu(C) = \mu(X)$.

Theorem The doubling map is mixing.

Proof: Let $A \subset [0,1)$ and $n \ge 1$. Then $D^{-n}(A)$ is the union of 2^n disjoint pieces $\frac{1}{2^n}A + \frac{k}{2^n}$, $k = 0, 1, \dots, 2^n - 1$. Suppose $B = [\frac{l}{2^m}, \frac{l+1}{2^m})$, where m > 0, $0 \le l < 2^m$. If $n \ge m$ then exactly 2^{n-m} pieces are contained in B, the others are disjoint from B. Hence

$$\mu(D^{-n}(A) \cap B) = 2^{n-m} \cdot 2^{-n} \mu(A) = \mu(A) \mu(B).$$

Since any measurable set B can be approximated by disjoint unions of the above intervals,

$$\lim_{n\to\infty}\mu(D^{-n}(A)\cap B)=\mu(A)\mu(B).$$

Proposition The rotation R_{α} of the circle is not mixing.

Proof: For any $\varepsilon > 0$ there exists n > 0 such that $R_{\alpha}^{n} = R_{n\alpha}$ is the rotation by an angle $< \varepsilon$. Hence there exists a sequence $n_{1} < n_{2} < \ldots$ such that for any arc $\gamma \subset S^{1}$,

$$\lim_{k\to\infty}\mu(R_{\alpha}^{-n_k}(\gamma)\cap\gamma)=\mu(\gamma).$$

But $\mu(\gamma) \neq \mu(\gamma)\mu(\gamma)/\mu(S^1)$ if $\gamma \neq S^1$.

 (X, \mathcal{B}, μ) : measured space of finite measure $T: X \to X$: measure-preserving transformation T is mixing if and only if for any $f, g \in L_2(X, \mu)$,

$$\lim_{n\to\infty}\int_X f(T^n(x))g(x)\,d\mu(x)=\frac{1}{\mu(X)}\int_X f\,d\mu\int_X g\,d\mu.$$

$$\lim_{n\to\infty}(U^nf,g)=\frac{(f,1)(1,g)}{(1,1)}.$$

Suppose f is a nonconstant eigenfunction of U, $Uf = \lambda f$, $|\lambda| = 1$. It is no loss to assume that (f, 1) = 0. Obviously, $(U^n f, f) = \lambda^n (f, f) \not\rightarrow 0$ as $n \rightarrow \infty$. (X, \mathcal{B}, μ) : measured space of finite measure $T : X \to X$: measure-preserving transformation $U : L_2(X, \mu) \to L_2(X, \mu)$: associated linear operator

T is called **weakly mixing** if U has no eigenfunctions other than constants.

mixing \implies weak mixing \implies ergodicity

In particular, the doubling map has no nonconstant eigenfunctions. In this case, the operator U has **countable Lebesgue spectrum**. Namely, there are functions f_{nm} (n, m = 1, 2, ...) on S^1 such that 1 and f_{nm} , $n, m \ge 1$ form an orthogonal basis for $L_2(X, \mu)$, and $Uf_{nm} = f_{n,m+1}$ for any $n, m \ge 1$.

Translation of the torus $R_{\alpha,\beta} : \mathbb{T}^2 \to \mathbb{T}^2$, $\alpha, \beta \in \mathbb{R}$. $R_{\alpha,\beta}(x_1, x_2) = (x_1 + \alpha, x_2 + \beta).$

 $R_{\alpha,\beta}$ is a measure-preserving homeomorphism.

Theorem $R_{\alpha,\beta}$ has pure point spectrum. It is ergodic if and only if the numbers α , β , and 1 are linearly independent over \mathbb{Q} (i.e., for any $k, m, n \in \mathbb{Z}$ the equality $k\alpha + m\beta + n = 0$ implies k = m = n = 0). Doubling map $D_2 : \mathbb{T}^2 \to \mathbb{T}^2;$ $D_2(x_1, x_2) = (2x_1 \mod 1, 2x_2 \mod 1).$

Theorem The doubling map on the torus preserves measure and is mixing. It has countable Lebesgue spectrum.

