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1 Introduction

Let M be a compact connected oriented surface. The surface M is called a
translation surface if it is equipped with a translation structure, that is, an atlas
of charts such that all transition functions are translations in R2. It is assumed
that the chart domains cover all surface M except for finitely many points
called singular. The translation structure induces the structure of a smooth
manifold, a flat Riemannian metric, and a Borel measure on the surface M
punctured at the singular points. We require that the metric has a cone type
singularity at each singular point; then the area of the surface is finite. The
cone angle is of the form 2πm, where m is an integer called the multiplicity of
the singular point. A singular point of multiplicity 1 is called removable; it is
rather a marked point than a true singularity of the metric.

Furthermore, the translation structure allows us to identify the tangent
space at any nonsingular point x ∈ M with the Euclidean space R2. In par-
ticular, the unit tangent space at any point is identified with the unit circle
S1 = {v ∈ R2 : |v| = 1}. The velocity is an integral of the geodesic flow
with respect to this identification. Thus each oriented geodesic has a direction,
which is a uniquely determined vector in S1. The direction of an unoriented
geodesic is determined up to multiplying by ±1.

Suppose X is a Riemann surface (one-dimensional complex manifold) home-
omorphic to the surface M . Any nonzero Abelian differential on X defines a
translation structure on M . The zeroes of the differential are singular points of
the translation structure, namely, a zero of order k is a singular point of mul-
tiplicity k + 1. Every translation structure without removable singular points
can be obtained this way.

Any geodesic joining a nonsingular point to itself is periodic (or closed).
We regard periodic geodesics as simple closed unoriented curves. Any periodic
geodesic is included in a family of freely homotopic periodic geodesics of the
same length and direction. The geodesics of the family fill an open connected
domain. Unless the translation surface is a torus without singular points, this
domain is an annulus. We call it a cylinder of periodic geodesics (or simply
a periodic cylinder). A periodic cylinder is bounded by geodesic segments of
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the same direction with endpoints at singular points. Such segments are called
saddle connections.

The fundamental results on periodic geodesics of translation surfaces were
obtained by Howard Masur in papers [M1], [M2], [M3]. These results can be
summarized as follows.

Theorem 1.1 (Masur) Let M be a translation surface without removable
singular points.

(a) There exists a periodic geodesic on M of length at most α
√

S, where S
is the area of M and α > 0 is a constant depending only on the genus of M .

(b) The directions of periodic geodesics of M are dense in S1.
(c) Let N1(M,T ) denote the number of periodic cylinders of M of length

at most T > 0. Then there exist 0 < c1(M) < c2(M) < ∞ such that

c1(M) ≤ N1(M,T )/T 2 ≤ c2(M)

for T sufficiently large.

The goal of the present paper is to prove effective versions of statements
(a) and (c) of Theorem 1.1, and to generalize statement (b).

Throughout the paper we consider translation surfaces that have at least
one singular point. There is no loss of generality as we can declare an arbitrary
nonsingular point to be a removable singular point.

Our first result is an effective version of Theorem 1.1(a).

Theorem 1.2 Let m be the sum of multiplicities of singular points of a trans-
lation surface M , and S be the area of M . Then there exists a periodic geodesic
on M of length at most αm

√
S, where αm = (8m)2

3m−1
.

It should be admitted that the proof of Theorem 1.1(a) given by Smillie in
the survey [S] can be further developed to obtain an effective estimate of the
constant α (unlike the proofs given in [M1] and [MT]). The techniques used
below to prove Theorem 1.2 are very similar to those used in [S].

The periodic geodesic provided by Theorem 1.2 belongs to a cylinder of par-
allel periodic geodesics of the same length. Although the length of this cylinder
is bounded, its width, in general, may be arbitrarily small. Nevertheless it is
possible to find a periodic cylinder whose area is not very small compared to
the area of the whole surface.

Theorem 1.3 Let m be the sum of multiplicities of singular points of a trans-
lation surface M , and S be the area of M . Then there exists a cylinder of
periodic geodesics of length at most βm

√
S, where βm = 224m

, and of area at
least S/m.
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The following theorem shows, in particular, that almost every point of a
translation surface lies on a periodic geodesic.

Theorem 1.4 Let m be the sum of multiplicities of singular points of a trans-
lation surface M , and S be the area of M . For any δ ∈ (0, 1) there exist pairwise
disjoint periodic cylinders Λ1, . . . ,Λk of length at most (8mδ−1)2

3m−1√
S such

that the area of the union Λ1 ∪ . . . ∪ Λk is at least (1− δ)S.

The group SL(2, R) acts on the set of translation structures on a given sur-
face by postcomposition of the chart maps with linear transformations from
SL(2, R). This action preserves singular points along with their multiplicities,
geodesics, and the measure induced by translation structure. It does not pre-
serve directions and lengths of geodesic segments however. This observation
allows one to derive statement (b) of Theorem 1.1 from statement (a). In the
same way Theorem 1.3 leads to the following result.

Theorem 1.5 Let m be the sum of multiplicities of singular points of a trans-
lation surface M , and S be the area of M . Then the directions of periodic
cylinders of area at least S/m are dense in S1.

A plane polygon is called rational if the angle between any two of its sides is
a rational multiple of π. A construction of Zemlyakov and Katok [ZK] associates
to any rational polygon Q a translation surface M so that the study of the
billiard flow in Q can be reduced to the study of the geodesic flow on M . In
view of this construction, Theorem 1.1(b) implies that directions of periodic
billiard orbits in Q are dense in the set of all directions. Boshernitzan, Galperin,
Krüger, and Troubetzkoy [BGKT] strengthened this result.

Theorem 1.6 ([BGKT]) For any rational polygon Q, the periodic points of
the billiard flow in Q are dense in the phase space of the flow. Moreover, there
exists a dense Gδ-set Q0 ⊂ Q such that for every point x ∈ Q0 the directions
of periodic billiard orbits starting at x form a dense subset of S1.

An analogous result for translation surfaces—periodic points of the geodesic
flow are dense in the phase space of the flow—can be obtained in the same way
(cf. [MT]). In this paper we prove a further strengthening of Theorem 1.1(b).

Theorem 1.7 (a) For any translation surface M , there exists a Gδ-set M0 ⊂
M of full measure such that for every point x ∈ M0 the directions of periodic
geodesics passing through x form a dense subset of S1.

(b) For any rational polygon Q, there exists a Gδ-subset Q0 ⊂ Q of full
measure such that for every point x ∈ Q0 the directions of periodic billiard
orbits starting at x form a dense subset of S1.
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Our final result is an effective version of Theorem 1.1(c).

Theorem 1.8 Let M be a translation surface. Denote by N1(M,T ) the num-
ber of cylinders of periodic geodesics on M of length at most T > 0. By
N2(M,T ) denote the sum of areas of these cylinders. Then(

(600m)(2m)2m
)−1

s2S−2T 2 ≤ N2(M,T )/S ≤

N1(M,T ) ≤ (400m)(2m)2m
s−2T 2

for any T ≥ 224m√
S, where S is the area of M , m is the sum of multiplicities

of singular points of M , and s is the length of the shortest saddle connection
of M .

The paper is organized as follows. Section 2 contains definitions, notation,
and preliminaries. The results on existence of periodic geodesics (Theorems
1.2, 1.3, and 1.4) are obtained in Section 3. The results on density of directions
of periodic geodesics (Theorems 1.5 and 1.7) are obtained in Section 4. Section
5 is devoted to the proof of Theorem 1.8.

2 Preliminaries

Let M be a compact connected oriented surface. A translation structure on M
is an atlas of coordinate charts ω = {(Uα, fα)}α∈A, where Uα is a domain in
M and fα is a homeomorphism of Uα onto a domain in R2, such that:

• all transition functions are translations in R2;
• chart domains Uα, α ∈ A, cover all surface M except for finitely many

points (called singular points);
• the atlas ω is maximal relative to the two preceding conditions;
• a punctured neighborhood of any singular point covers a punctured neigh-

borhood of a point in R2 via an m-to-1 map which is a translation in coordi-
nates of the atlas ω; the number m is called the multiplicity of the singular
point.

A translation surface is a compact connected oriented surface equipped
with a translation structure.

The translation structures are also (and probably better) known as “ori-
entable flat structures” or “admissible positive F -structures”.

Let M be a translation surface and ω be the translation structure of M .
Each translation of the plane R2 is a smooth map preserving orientation, Eu-
clidean metric and Lebesgue measure on R2. Hence the translation structure
ω induces a smooth structure, an orientation, a flat Riemannian metric, and a
finite Borel measure on the surface M punctured at the singular points of ω.
Each singular point of ω is a cone type singularity of the metric. The cone angle
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is equal to 2πm, where m is the multiplicity of the singular point. Any geodesic
of the metric is a straight line in coordinates of the atlas ω. A geodesic hitting
a singular point is considered to be singular, its further continuation is unde-
fined. Almost every element of the tangent bundle gives rise to a nonsingular
geodesic.

The translation structure ω allows us to identify the tangent space at any
nonsingular point x ∈ M with the Euclidean space R2. In particular, the unit
tangent space at any point is identified with the unit circle S1 = {v ∈ R2 :
|v| = 1}. The velocity is an integral of the geodesic flow with respect to this
identification. Thus each oriented geodesic is assigned a direction v ∈ S1. The
direction of an unoriented geodesic is determined up to multiplying by ±1.
For any v ∈ S1, let Mv denote the invariant surface of the phase space of
the geodesic flow corresponding to the motion with velocity v. Clearly, the
restriction of the geodesic flow to Mv can be regarded as a flow on the surface
M . This flow is called the directional flow in direction v. If a point x ∈ M is
singular or at least one of geodesics starting at x in the directions ±v hits a
singular point, then the directional flow is only partially defined at the point
x. The directional flow is fully defined on a subset of full measure (depending
on v) and preserves the measure on M .

A singular point of multiplicity 1 is called removable. If x ∈ M is a remov-
able singular point of the translation structure ω, then there exists a translation
structure ω+ ⊃ ω such that x is not a singular point of ω+. On the other hand,
let x be a nonsingular point of M . Suppose ω− is the set of charts (Uα, fα) ∈ ω
such that x /∈ Uα. Then ω− is a translation structure on M and x is a removable
singular point of ω−.

Let p be the genus of a translation surface M , k be the number of singular
points of M , and m be the sum of multiplicities of the singular points. Then
m = 2p−2+k. It follows that there are no translation structures on the sphere,
a translation torus can have only removable singular points, and a translation
surface of genus p > 1 has at least one nonremovable singular point.

Suppose X is a complex structure on a compact connected oriented surface
M . Let q be a nonzero Abelian differential (holomorphic 1-form) on X. A
chart (U, z), where U is a domain in M and z is a homeomorphism of U onto
a domain in C, is called a natural parameter of the differential q if q = dz
in U with respect to the complex structure X. Let ω denote the atlas of all
natural parameters of q. The natural identification of C with R2 allows us to
consider ω as an atlas of charts ranging in R2. It is easy to observe that ω
is a translation structure on M . The singular points of ω are the zeroes of
the differential q, namely, a zero of order n is a singular point of multiplicity
n + 1. Each translation structure on M without removable singular points can
be obtained by this construction.

Another way to construct translation surfaces is to glue them from poly-
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gons. Let Q1, . . . , Qn be disjoint plane polygons. The natural orientation of R2

induces an orientation of the boundary of every polygon. Suppose all sides of
the polygons Q1, . . . , Qn are groupped in pairs such that two sides in each pair
are of the same length and direction, and of opposite orientations. Glue the
sides in each pair by translation. Then the union of the polygons Q1, . . . , Qn

becomes a surface M . By construction, the surface M is compact and oriented.
Suppose M is connected (if it is not, then we should apply the construction to
a smaller set of polygons). The restrictions of the identity map on R2 to the
interiors of the polygons Q1, . . . , Qn can be regarded as charts of M . This finite
collection of charts extends to a translation structure ω on M . The translation
structure ω is uniquely determined if we require that the set of singular points
of ω be the set of points corresponding to vertices of the polygons Q1, . . . , Qn.

A particular case of the latter construction is the so-called Zemlyakov-
Katok construction, which descends from the paper [ZK]. Let Q be a plane
polygon. Let s1, . . . , sn be sides of Q. For any i, 1 ≤ i ≤ n, let r̃i denote
the reflection of the plane in the side si and ri denote the linear part of r̃i.
By G(Q) denote the subgroup of O(2) generated by the reflections r1, . . . , rn.
The polygon Q is called rational if the group G(Q) is finite. All angles of a
rational polygon are rational multiples of π. This property is equivalent to
being rational provided the polygon is simply connected. Suppose the polygon
Q is rational. Let Qg, g ∈ G(Q), be disjoint polygons such that for any g ∈
G(Q) there exists an isometry Rg : Qg → Q with linear part g. Now for any
i ∈ {1, . . . , n} and any g ∈ G(Q) glue the side R−1

g si of the polygon Qg to
the side R−1

gri
si of the polygon Qgri by translation. This transforms the union

of polygons Q1, . . . , Qn into a compact connected oriented surface M . Observe
that the collection of isometries Rg, g ∈ G(Q), gives rise to a continuous map
fQ : M → Q. The surface M is endowed with a translation structure ω as
described above. Singular points of ω correspond to vertices of the polygon Q.
Namely, the vertex of any angle of the form 2πn1/n2, where n1 and n2 are
coprime integers, gives rise to N/n2 singular points of multiplicity n1, where
N is the cardinality of the group G(Q).

The Zemlyakov-Katok construction is crucial for the study of the billiard
flow in rational polygons. The billiard flow in a polygon Q is a dynamical
system that describes a point-like mass moving freely within the polygon Q
subject to elastic reflections in the boundary of Q. A billiard orbit in Q is a
broken line changing its direction at interior points of the sides of Q according
to the law “the angle of incidence is equal to the angle of reflection”. A billiard
orbit hitting a vertex of the polygon Q is supposed to stop at this vertex. A
billiard orbit starting at a point x ∈ Q in a direction v ∈ S1 is periodic if it
returns eventually to the point x in the direction v. Suppose Q is a rational
polygon. Let M be the translation surface associated to Q. Let fQ : M → Q
be the continuous map introduced above. It is easy to see that fQ maps any
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geodesic on the surface M onto a billiard orbit in Q. Conversely, any billiard
orbit in Q is the image of a (not uniquely determined) geodesic on M . By
construction, there exists a domain D ⊂ M such that fQ maps the domain
D isometrically onto the interior of the polygon Q and, moreover, the chart
(D, fQ|D) is an element of the translation structure of M . If L is a geodesic
starting at a point x ∈ D in a direction v ∈ S1, then fQ(L) is the billiard orbit
in Q starting at the point fQ(x) in the same direction.

Let M be a translation surface. A domain U ⊂ M containing no singular
points is called a triangle (a polygon, an n-gon) if it is isometric to the interior of
a triangle (resp. a polygon, an n-gon) in the plane R2. Suppose h : U → P ⊂ R2

is a corresponding isometry. The inverse map h−1 : P → U can be extended to
a continuous map of the closure of P to M . The images of sides and vertices of
the polygon P under this extension are called sides and vertices of U . Every
side of U is either a geodesic segment or a union of several parallel segments
separated by singular points. Note that the number of vertices of the n-gon U
may be less than n. A triangulation of the translation surface M is its partition
into a finite number of triangles.

A saddle connection is a geodesic segment joining two singular points or a
singular point to itself and having no singular points in its interior (note that
singular points are saddles for directional flows). Two saddle connections of
a translation surface are said to be disjoint if they have no common interior
points (common endpoints are allowed). Three saddle connections are pairwise
disjoint whenever they are sides of a triangle. For any T > 0 there are only
finitely many saddle connections of length at most T . In particular, there exists
the shortest saddle connection (probably not unique).

The following proposition is well known (see, e.g. [MT], [Vo]).

Proposition 2.1 (a) Any collection of pairwise disjoint saddle connections
can be extended to a maximal collection.

(b) Any maximal collection of pairwise disjoint saddle connections forms a
triangulation of the surface M such that all sides of each triangle are saddle
connections.

(c) For any maximal collection, the number of saddle connections is equal
to 3m, and the number of triangles in the corresponding triangulation is equal
to 2m, where m is the sum of multiplicities of singular points.

Any geodesic joining a nonsingular point to itself is called periodic (or
closed); such a geodesic is a periodic orbit of a directional flow. We only con-
sider primitive periodic geodesics, that is, the period of the geodesic is its
length. Also, we regard periodic geodesics as unoriented curves. If a geodesic
starting at a point x ∈ M is periodic, then all geodesics starting at nearby
points in the same direction are also periodic. Actually, each periodic geodesic
belongs to a family of freely homotopic periodic geodesics of the same length
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and direction. If M is a torus without singular points, then this family fills
the whole surface M . Otherwise the family fills a domain homeomorphic to
an annulus. This domain is called a cylinder of periodic geodesics (or simply
a periodic cylinder) since it is isometric to a cylinder R/lZ × (0, w), where
l, w > 0. The numbers l and w are called the length and the width of the
periodic cylinder. The cylinder is bounded by saddle connections of the same
direction.

Let ω = {(Uα, fα)}α∈A be a translation structure on the surface M . For
any linear operator a ∈ SL(2, R) the atlas {(Uα, a◦fα)}α∈A is also a translation
structure on M . We denote this structure by aω. Clearly, (a1a2)ω = a1(a2ω)
for any a1, a2 ∈ SL(2, R) so we have an action of the group SL(2, R) on the
set of translation structures on M . The translation structures ω and aω share
the same singular points of the same multiplicities and the same geodesics. In
addition, they induce the same measure on the surface M .

To each oriented geodesic segment L of the translation structure ω we
associate the vector v ∈ R2 of the same length and direction. If the segment L
is not oriented, then the vector v is determined up to reversing its direction. For
any a ∈ SL(2, R) the vector av is associated to L with respect to the translation
structure aω. Given a direction v1 ∈ S1, the length of the orthogonal projection
of v on the direction v1 is called the projection of the segment L on v1 (with
respect to ω).

3 Existence of periodic geodesics

To prove Theorems 1.2, 1.3, and 1.4, we need the following proposition.

Proposition 3.1 Let M be a translation surface of area S. Suppose L1, . . . , Lk

(k ≥ 0) are pairwise disjoint saddle connections of length at most
√

2S. Then
at least one of the following possibilities occur:

(1) saddle connections L1, . . . , Lk partition the surface into finitely many
domains such that each domain is either a periodic cylinder of length at most√

S or a triangle bounded by three saddle connections;
(2) there exists a saddle connection L of length at most 2

√
2S disjoint from

L1, . . . , Lk.

Proof. First consider the case when a small neighborhood of some singular
point x0 contains an open sector K of angle π that is disjoint from saddle
connections L1, . . . , Lk. Suppose there exists a geodesic segment J of length at
most

√
2S that goes out of the point x0 across sector K and ends in a point y

which is either a singular point or an interior point of some saddle connection
Lj , 1 ≤ j ≤ k. We can assume without loss of generality that the interior of the
segment J contains no singular point and is disjoint from saddle connections
L1, . . . , Lk. If y is a singular point, then J is a saddle connection disjoint from
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L1, . . . , Lk, thus condition (2) holds. Suppose y is an interior point of Lj . Let
K ′ be an open sector with vertex at the point x0 crossed by the segment J .
We assume that each geodesic I going out of x0 across the sector K ′ intersects
Lj before this geodesic hits a singular point or intersects another given saddle
connection. This condition holds, for instance, when the angle of the sector K ′

is small enough. Let I0 denote the segment of the geodesic I from the point x0

to the first intersection with Lj . The segments I0, J , and a subsegment of Lj

are sides of a triangle, hence the length of I0 is less than the sum of lengths
of J and Lj , which, in turn, is at most 2

√
2S. Without loss of generality it

can be assumed that K ′ is the maximal sector with the above property. By
the maximality, both geodesics going out of x0 along the boundary of K ′ hit
singular points before they intersect any of the given saddle connections. It
follows that these geodesics are saddle connections of length at most 2

√
2S.

By construction, any of the two saddle connections either is disjoint from saddle
connections L1, . . . , Lk or coincides with one of them. Since the angle of the
sector K ′ is less than π, at least one of the boundary saddle connections crosses
the sector K; such a saddle connection is not among L1, . . . , Lk. Thus condition
(2) holds.

Now suppose that any geodesic segment of length
√

2S going out of the
point x0 across sector K does not reach a singular point and does not intersect
saddle connections L1, . . . , Lk. Let I be the geodesic segment of length

√
S that

goes out of the singular point x0 dividing the sector K into two equal parts.
By v denote one of two directions orthogonal to the direction of I. Let {F t}t∈R
be the directional flow in direction v. By I0 denote the segment I without its
endpoints. For any t > 0 let Dt denote the set of points of the form F τx, where
x ∈ I0 and 0 < τ < t. If t is small enough, then Dt is a rectangle with sides√

S and t. Let t1 be the maximal number with this property. The area of the
rectangle Dt1 is equal to t1

√
S, hence t1 ≤

√
S. Set D′

t1 = Dt1 ∪ F t1I0. Any
point x ∈ D′

t1 can be joined to the point x0 by a geodesic segment Jx such that
all interior points of Jx are contained in Dt1 . The segment Jx crosses the sector
K and the length of Jx is at most

√
t21 + S ≤

√
2S. It follows that the set D′

t1
is disjoint from saddle connections L1, . . . , Lk and contains no singular points.
Likewise, the set D′

−t1 = {F tx | x ∈ I0, −t1 ≤ t < 0} is also disjoint from
L1, . . . , Lk and contains no singular points. By the choice of t1, there exists a
point x1 ∈ I0 such that the point F t1x1 either is singular or belongs to I0. As
F t1x1 ∈ D′

t1 , we have F t1x1 ∈ I0. Let y0 denote the endpoint of I different from
x0. It is easy to see that the set I1 = I0∩F t1I0 is an open subsegment of I0 and
y0 is an endpoint of I1. Suppose that I1 6= I0. Let y be an endpoint of I1 that
is an interior point of I. Obviously, F−t1y ∈ I. Since y is an endpoint of I1, it
follows that F−t1y = x0. On the other hand, F−t1y ∈ D′

−t1 . This contradiction
proves that I1 = I0. It follows that the set D′

t1 is a union of periodic geodesics
of length t1 and of direction v. Therefore D′

t1 is contained in a periodic cylinder
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Λ of length t1 ≤
√

S. The cylinder Λ contains the sector K. By construction,
at least some of periodic geodesics in Λ do not intersect saddle connections
L1, . . . , Lk. It follows easily that the whole cylinder is disjoint from L1, . . . , Lk.

Now suppose that condition (2) does not hold. We have to show that condi-
tion (1) does hold in this case. By the above the saddle connections L1, . . . , Lk

divide a small neighborhood of each singular point into sectors of angle at most
π. Moreover, each sector of angle π is contained within a periodic cylinder of
length at most

√
S disjoint from L1, . . . , Lk. The saddle connections L1, . . . , Lk

partition the surface M into finitely many domains. Let D be one of these do-
mains. Take a singular point x0 at the boundary of D. A small neighborhood
of x0 intersects the domain D in one or more sectors of angle at most π. Let
K be one of such sectors. If the sector K is of angle π, then it is contained in
a periodic cylinder Λ of length at most

√
S disjoint from L1, . . . , Lk. Clearly,

Λ ⊂ D. The lengths of saddle connections bounding the cylinder Λ do not
exceed the length of Λ. Any of these saddle connections either is disjoint from
L1, . . . , Lk or coincides with one of them. Since condition (2) does not hold, all
saddle connections bounding Λ are among L1, . . . , Lk. This means that D = Λ.
Now consider the case when the angle of the sector K is less than π. The sector
K is bounded by some saddle connections Li and Lj . Let T be a triangle such
that T contains the sector K, the saddle connection Li is a side of T , and
a subsegment of Lj is another side of T . Obviously, T ⊂ D. We can assume
without loss of generality that T is the maximal triangle with this property. By
L0 denote the side of T different from Li and from the subsegment of Lj . Let
J be a geodesic segment that goes out of the point x0 across sector K, crosses
the triangle T , and ends in a point y ∈ L0. The length of J is less than the sum
of lengths of Li and Lj , which, in turn, is at most 2

√
2S. Since condition (2)

does not hold, the point y can not be singular. It follows that the side L0 is a
single geodesic segment. By the maximality of T , the whole saddle connection
Lj is a side of T . Then L0 is a saddle connection. By the triangle inequality,
the length of L0 is at most 2

√
2S. Hence L0 is one of the saddle connections

L1, . . . , Lk as otherwise L0 is disjoint from L1, . . . , Lk. This means that D = T .
Thus condition (1) holds.

For any operator a ∈ SL(2, R), let ‖a‖ denote the norm of a and C(a)
denote the condition number of a:

‖a‖ = max
v∈R2, |v|=1

|av|, C(a) = max (‖a‖, ‖a−1‖).

Obviously, C(a1a2) ≤ C(a1)C(a2) for any a1, a2 ∈ SL(2, R). Suppose L is a
geodesic segment of a translation structure ω. Then the lengths of the segment
L with respect to translation structures ω and aω differ by at most C(a) times.
Proof of Theorem 1.4. Let δ ∈ (0, 1). Set ε = (8mδ−1)−23m−1

. Note that
ε2−3m ≤ 1/2. Let ω denote the translation structure of the translation surface
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M . Suppose that a sequence L1, . . . , Lk (k ≥ 0) of pairwise disjoint saddle
connections and a sequence of operators a0, a1, . . . , ak ∈ SL(2, R) satisfy the
following two conditions: (i) C(ai) ≤ (1/ε)1−2−i

for i = 0, 1, . . . , k; and (ii) the
length of Li with respect to the translation structure ajω, 1 ≤ i ≤ j ≤ k, does
not exceed 2

√
2S ε2−j

. Furthermore, suppose there exists a saddle connection L
disjoint from L1, . . . , Lk and of length at most 2

√
2S with respect to the trans-

lation structure akω. Let v, u ∈ S1 be orthogonal vectors such that v is parallel
to the saddle connection L with respect to akω. Define an operator b ∈ SL(2, R)
by equalities bv = ε2−k−1

v, bu = ε−2−k−1
u. Further, set ak+1 = bak. Obviously,

C(b) = (1/ε)2
−k−1

, hence C(ak+1) ≤ C(b)C(ak) ≤ (1/ε)2
−k−1

(1/ε)1−2−k
=

(1/ε)1−2−k−1
. The length of the saddle connection L with respect to ak+1ω

is at most 2
√

2S ε2−k−1
, while the length of saddle connections L1, . . . , Lk

with respect to ak+1ω is at most 2
√

2S ε2−k
C(b) = 2

√
2S ε2−k−1

. Thus the
sequence of saddle connections L1, . . . , Lk, L and the sequence of operators
a0, a1, . . . , ak, ak+1 satisfy the conditions (i) and (ii).

Pairs of sequences satisfying conditions (i) and (ii) do exist, for example,
the empty sequence of saddle connections and the sequence consisting of one
operator a0 = 1. By Proposition 2.1, the number of pairwise disjoint saddle
connections can not exceed 3m. Therefore there exists a pair of sequences
L1, . . . , Lk and a0, a1, . . . , ak satisfying conditions (i) and (ii) with maximal
possible k. The lengths of the saddle connections L1, . . . , Lk with respect to
akω are at most 2

√
2Sε2−k ≤ 2

√
2Sε2−3m ≤

√
2S, thus Proposition 3.1 applies.

By the maximality of k, there is no saddle connection disjoint from L1, . . . , Lk

and of length at most 2
√

2S with respect to the translation structure akω. Thus
the saddle connections L1, . . . , Lk partition the surface M into finitely many
domains such that each domain is either a periodic cylinder of length at most√

S with respect to akω or a triangle bounded by three saddle connections.
Any triangle in this partition is of area at most 1

2(2
√

2S ε2−k
)2 with respect

to both akω and ω. It follows from Proposition 2.1 that there are at most 2m
triangles in the partition. Hence the union of these triangles is of area at most

m(2
√

2S ε2−k
)2 ≤ m(2

√
2S ε2−3m

)2 = δS.

Then the union of all periodic cylinders in the partition is of area at least
(1− δ)S. It remains to observe that the length of each periodic cylinder with
respect to the translation structure ω is at most C(ak)

√
S ≤ (1/ε)1−2−k√

S <
ε−1

√
S = (8mδ−1)2

3m−1√
S.

Proof of Theorem 1.2. By Theorem 1.4, for any δ ∈ (0, 1) the translation
surface M admits a periodic geodesic of length at most (8mδ−1)2

3m−1√
S. For

any T > 0 the number of periodic cylinders of length at most T is finite,
therefore there exists a shortest periodic geodesic. Let l denote its length.
Since l ≤ (8mδ−1)2

3m−1√
S for any δ ∈ (0, 1), we have l ≤ (8m)2

3m−1√
S.
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Proof of Theorem 1.3. In the case m = 1 the translation surface M is
a torus with one removable singular point. Here every cylinder of periodic
geodesics fills the whole surface (up to the boundary saddle connection). As
α1 = 822

= 212 < 224
= β1, the theorem follows from Theorem 1.2 in this case.

Consider the case m ≥ 2. By Theorem 1.4, there exist pairwise disjoint
periodic cylinders Λ1, . . . ,Λk of length at most (8m2)2

3m−1√
S such that the

area of the union Λ1 ∪ . . .∪Λk is at least (1− 1/m)S. Each cylinder Λi can be
triangulated by pairwise disjoint saddle connections. The number of triangles
in any triangulation is at least 2. If we require that each side of any triangle
is a saddle connection (not a union of several saddle connections), then the
number of triangles is equal to the number of saddle connections bounding
Λi, where saddle connections bounding Λi from both sides should be counted
twice. All saddle connections used in triangulation of the cylinders Λ1, . . . ,Λk

are pairwise disjoint since the cylinders are disjoint. By Proposition 2.1, we
can add several saddle connections to obtain a partition of the surface M into
2m triangles bounded by disjoint saddle connections. It follows easily that the
number k of cylinders is at most m. Moreover, if k = m then the closure of the
union Λ1∪ . . .∪Λk is the whole surface M . In the latter case at least one of the
cylinders Λ1, . . . ,Λk is of area not less than S/m. In the case k < m one of the
cylinders is of area not less than (1− 1/m)S/k ≥ (1− 1/m)S/(m− 1) = S/m.

To complete the proof, it remains to show that (8m2)2
3m−1 ≤ βm. It is easy

to observe that 8m2 ≤ 22m+1 and 2m+1 < 2m+1 for any integer m ≥ 1. Hence,
(8m2)2

3m−1 ≤ 2(2m+1)23m−1
< 224m

= βm.

4 Density of directions of periodic geodesics

In this section we prove Theorems 1.5 and 1.7. They are derived from Theorems
1.3 and 1.4, respectively.
Proof of Theorem 1.5. Let ω denote the translation structure of the trans-
lation surface M . We have to show that for any direction v ∈ S1 and any ε > 0
there exists a periodic cylinder of ω of area at least S/m such that the angle
between v and the direction of the cylinder is less than ε.

Let u ∈ S1 be a direction orthogonal to v. For any λ > 1 define an operator
aλ ∈ SL(2, R) by equalities aλv = λ−1v, aλu = λu. The sum of multiplicities
of singular points of the translation structure aλω is equal to m and the area
of the surface M with respect to aλω is equal to S. By Theorem 1.3, there
exists a periodic cylinder Λλ of area at least S/m such that the length of Λλ

with respect to aλω is at most l = 224m√
S. Let hλ and wλ be projections of a

periodic geodesic from the cylinder Λλ on the directions v and u (with respect
to the translation structure ω). Further, let ϕλ be the angle between v and the
direction of Λλ, where the direction of the cylinder is chosen so that 0 ≤ ϕλ ≤
π/2. Obviously, hλ ≤ λl, wλ ≤ λ−1l. Let s denote the length of the shortest

12



saddle connection of ω. Assuming λ is large enough, we have wλ ≤ s/
√

2. Since

the length of the cylinder Λλ, which is equal to
√

h2
λ + w2

λ, is not less than s,

it follows that hλ ≥ s/
√

2. Then ϕλ ≤ tanϕλ = wλ/hλ ≤ λ−1l
√

2/s, which
tends to zero as λ goes to infinity.

Proof of Theorem 1.7. Let M be a translation surface. Take a nonempty
open subset U of the circle S1. Let PU denote the set of points x ∈ M lying
on periodic geodesics with directions in the set U . The set PU is open. Let
us show that this set is of full measure. Take a vector v ∈ U . Choose ε > 0
such that a direction v′ ∈ S1 belongs to U whenever the angle between v′ and
v is less than ε. Further, choose some δ ∈ (0, 1). Let u ∈ S1 be a direction
orthogonal to v. For any λ > 1 define an operator aλ ∈ SL(2, R) by equalities
aλv = λ−1v, aλu = λu. Let ω denote the translation structure of M , m denote
the sum of multiplicities of singular points of M , and S denote the area of
M . By Theorem 1.4, there exist pairwise disjoint periodic cylinders Λ1, . . . ,Λk

such that the length of every cylinder with respect to the translation structure
aλω is at most lδ = (8mδ−1)2

3m−1√
S and the area of the union Λ1 ∪ . . . ∪ Λk

is at least (1− δ)S (with respect to both aλω and ω). Take some cylinder Λi.
Let h and w be projections of a periodic geodesic from the cylinder Λi on the
directions v and u (with respect to the translation structure ω). Further, let
ϕ be the angle between v and the direction of Λi (0 ≤ ϕ ≤ π/2). Obviously,
h ≤ λlδ, w ≤ λ−1lδ. Let s denote the length of the shortest saddle connection
of ω. The length of the cylinder Λi is not less than s. If λ ≥ lδ

√
2/s, then

w ≤ s/
√

2, hence h ≥ s/
√

2. It follows that ϕ ≤ tanϕ = w/h ≤ λ−1lδ
√

2/s. If,
moreover, λ > ε−1lδ

√
2/s, then ϕ < ε and the direction of the cylinder Λi is in

the set U . Thus the cylinders Λ1, . . . ,Λk are contained in the set PU provided
λ is sufficiently large. Then the area of PU is at least (1 − δ)S. As δ can be
chosen arbitrarily small, the area of PU is equal to S.

Choose a sequence U1, U2, . . . of nonempty open subsets of the circle S1 such
that any other nonempty open subset of S1 contains some Ui. By the above the
sets PU1 , PU2 , . . . are open sets of full measure. Hence the set P∞ = ∩∞i=1PUi

is a Gδ-subset of full measure of the surface M . Take a point x ∈ P∞. For
any positive integer i there exists a direction vi ∈ Ui that is the direction of a
periodic geodesic passing through x. By construction, the sequence v1, v2, . . .
is dense in S1. The first statement of the theorem is proved.

To derive statement (b) of Theorem 1.7 from statement (a), we only need
to recall the Zemlyakov-Katok construction (see Section 2). Let Q be a rational
polygon and M be the translation surface associated to Q. By construction,
there is a continuous map f : M → Q and a domain D ⊂ M containing no
singular points such that f maps the domain D isometrically onto the interior
of the polygon Q. Moreover, if L is a geodesic passing through a point x ∈ D
in a direction v ∈ S1, then f(L) is the billiard orbit in Q starting at the point
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f(x) in the direction v. The billiard orbit f(L) is periodic if and only if the
geodesic L is periodic. By the above there exists a Gδ-set M0 ⊂ M of full
measure such that for any x ∈ M0 the directions of periodic geodesics passing
through x are dense in S1. Then the set Q0 = f(D ∩ M0) is a Gδ-subset of
the polygon Q and the area of Q0 is equal to the area of Q. For any point
x ∈ Q0 the directions of periodic billiard orbits in Q starting at x are dense in
S1.

5 Lower quadratic estimates

Let M be a translation surface. In this section we obtain effective estimates of
the growth functions N1(M, ·) and N2(M, ·), where N1(M,T ) is the number
of cylinders of periodic geodesics of length at most T and N2(M,T ) is the
sum of areas of those cylinders. Throughout the section m denotes the sum of
multiplicities of singular points of the translation surface M (m ≥ 1), S denotes
the area of M , and s denotes the length of the shortest saddle connection of
M .

For any T > 0 let N0(M,T ) denote the number of saddle connection of M
of length at most T . An effective upper estimate of this number was obtained
in [Vo].

Theorem 5.1 ([Vo]) N0(M,T ) ≤ hms−2T 2 for any T > 0, where h1 = (3 ·
27)6 and hm = (400m)(2m)2m

for m ≥ 2.

In the case m = 1 the latter estimate can be significantly improved.

Lemma 5.2 Suppose M is a translation torus with a single (removable) sin-
gular point. Then N0(M,T ) ≤ 7s−2T 2 for any T > 0. In addition, s2 ≤ 3S/2.

Proof. The translation torus M is isometric to a torus R2/(v1Z ⊕ v2Z),
where v1 and v2 are linearly independent vectors in R2 (we do not require that
the isometry preserve directions). Let L = v1Z ⊕ v2Z. By L0 denote the set
of vectors in L contained in neither of the lattices 2L, 3L, . . .. The isometry
establishes a one-to-one correspondence between saddle connections of M and
pairs of vectors ±v ∈ L0. The length of a saddle connection is equal to the
length of the corresponding vectors. By H denote the set of points (y1, y2) ∈ R2

such that either y2 > 0, or y2 = 0 and y1 > 0. Then N0(M,T ) is equal to the
number of vectors of length at most T in the set H∩L0. Notice that the vectors
v1 and v2 are not determined in a unique way. Without loss of generality it
can be assumed that v1 = (0, s) and v2 = (S/s, y), where 0 ≤ y < s. Then
min(|v2|, |v2 − v1|) ≤

√
(S/s)2 + (s/2)2. Since |v| ≥ s for any nonzero vector

v ∈ v1Z⊕v2Z, we have s2 ≤ (S/s)2+(s/2)2. It follows that s2 ≤ 2S/
√

3 ≤ 3S/2.
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Let i and j be positive integers. The rectangle P+
i,j = ((i − 1)S/s, iS/s] ×

[(j − 1)s, js) ⊂ R2 is contained in the halfplane H and contains precisely one
element of the lattice L. Likewise, the rectangle P−

i,j = [−iS/s,−(i− 1)S/s)×
((j − 1)s, js] is contained in H and contains only one element of L. Given
T > 0, let BT = {v ∈ R2 : |v| ≤ T}. The number of rectangles of the form P±

i,j

contained in the halfdisc BT ∩H does not exceed πT 2/(2S). For any k ∈ Z set
Lk = {(y1, y2) ∈ H : y1 = Sk/s}. If k 6= 0, then the halfline Lk containes at
most one element v ∈ L such that v ∈ BT but the rectangle of the form P±

i,j

containing v is not contained in BT . The halfline L0 containes at most T/s
elements of BT ∩ L. Finally, the cardinality of the set BT ∩H ∩ L is at most
πT 2/(2S)+2sT/S+T/s. As this cardinality is not less than N0(M,T ), we have
N0(M,T ) ≤ πT 2/(2S)+2sT/S+T/s ≤ 3πs−2T 2/4+4s−1T ≤ 3s−2T 2+4s−1T .
It follows that N0(M,T ) ≤ 7s−2T 2 for T ≥ s. If T < s, then N0(M,T ) = 0 <
7s−2T 2.

The following lemma is an improved version of Theorem 1.3 for translation
tori.

Lemma 5.3 Suppose M is a translation torus with m ≥ 1 singular points.
Then there exists a cylinder of periodic geodesics of length at most 2

√
S and

of area at least S/m.

Proof. Let ω denote the translation structure of the translation torus M . Let
x1, x2, . . . , xm be the singular points of ω. All singular points are removable. By
ω1 denote the translation structure on M such that ω1 ⊃ ω and x1 is the only
singular point of ω1. Let M1 denote the torus M considered as the translation
surface with the translation structure ω1. Let S1 be the area of M1 and s1 be
the length of the shortest saddle connection of M1. It is easy to observe that
S1 = S and s1 ≥ s. The shortest saddle connection of M1 bounds a periodic
cylinder Λ of M1. The length of Λ is equal to s1 and the area of Λ is equal to S.
By Lemma 5.2, s1 ≤

√
3S/2 < 2

√
S. The points x2, . . . , xm split the cylinder Λ

into several periodic cylinders of the translation surface M . All these cylinders
are of length s1 ≤ 2

√
S. The number of the cylinders does not exceed m, hence

at least one of them is of area not less than S/m.

Proof of Theorem 1.8. Let M be a translation surface. To each cylinder of
periodic geodesics of M we assign a saddle connection bounding the cylinder.
The length of the saddle connection does not exceed the length of the cylinder.
It is possible that a saddle connection bounds two different periodic cylinders.
Nevertheless the assignment can be done so that any saddle connection is
assigned to at most one cylinder. It follows that N1(M,T ) ≤ N0(M,T ) for any
T > 0. Thus Theorem 5.1 (in the case m ≥ 2) and Lemma 5.2 (in the case
m = 1) imply that N1(M,T ) ≤ (400m)(2m)2m

s−2T 2 for any T > 0. Besides,
the estimate N2(M,T )/S ≤ N1(M,T ) is trivial.
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We proceed to the proof of the lower estimate of N2(M,T ). Let C0 =
h̃ms−2, where h̃1 = 7 and h̃m = (400m)(2m)2m

for m ≥ 2. By Theorem 5.1 and
Lemma 5.2, N1(M,T ) ≤ N0(M,T ) ≤ C0T

2 for any T > 0. Denote by σ(T )
the sum of inverse lengths over all cylinders of periodic geodesics of length
at most T . Let T1 ≤ T2 ≤ . . . ≤ Tn ≤ . . . be lengths of periodic cylinders
of M in ascending order. It follows from the estimate N1(M,T ) ≤ C0T

2 that
Tn ≥ C

−1/2
0 n1/2, n = 1, 2, . . .. Therefore,

σ(T ) =
∑

n:Tn≤T

T−1
n ≤ C

1/2
0

∑
n:Tn≤T

n−1/2 ≤ C
1/2
0

∑
n≤C0T 2

n−1/2 ≤

≤ C
1/2
0

∫ C0T 2

0
x−1/2 dx = C

1/2
0 · 2(C0T

2)1/2 = 2C0T.

Set T0 = lm
√

S, where l1 = l2 = 2 and lm = 224m
for m ≥ 3. Let Λ be a

periodic cylinder and |Λ| be the length of Λ. For any λ ≥ 1 let AΛ(λ) denote
the set of directions v ∈ S1 such that the projection of periodic geodesics from
Λ on the direction orthogonal to v is at most λ−1T0. Let v ∈ AΛ(λ) and ϕ be
the angle between v and the direction of the cylinder Λ (0 ≤ ϕ ≤ π/2). Then
ϕ ≤ π/2 · sinϕ ≤ π/2 · λ−1T0/|Λ|. It follows that

ν(AΛ(λ)) ≤ 4 · π/2 · λ−1T0/|Λ| = 2πT0λ
−1 · |Λ|−1,

where ν is Lebesgue measure on the circle S1 normalized so that ν(S1) = 2π.
Take an arbitrary number T ≥ T0 and set λ = T/T0. Let ω denote the

translation structure of the translation surface M . For any direction v ∈ S1

define an operator aλ,v ∈ SL(2, R) by equalities aλ,vv = λ−1v, aλ,vu = λu,
where u ∈ S1 is a vector orthogonal to v. We claim that there exists a periodic
cylinder Λ of area at least S/m such that the length of Λ with respect to the
translation structure aλ,v ω does not exceed T0. In the case m ≥ 3, this follows
from Theorem 1.3. In the case m ≤ 2, the translation surface M is a torus,
thus the claim follows from Lemma 5.3. The projection of a geodesic from Λ on
the direction u (with respect to the translation structure ω) is at most λ−1T0,
hence v ∈ AΛ(λ). Since λ ≥ 1, the condition number (see Section 3) of the
operator aλ,v is equal to λ. Therefore, |Λ| ≤ λT0 = T . It follows that the union
of sets AΛ(λ) over all periodic cylinders Λ of length at most T (with respect
to ω) and of area at least S/m is the circle S1.

Let Σ denote the sum of measures of sets AΛ(λ), where Λ runs over all
periodic cylinders of length at most T and of area at least S/m. Since these
sets cover the whole circle S1, we have Σ ≥ 2π. Set α = (4T 2

0 C0)−1. By
Theorem 1.3 and Lemma 5.3, the translation structure ω admits a periodic
cylinder of length at most T0, hence 1 ≤ N1(M,T0) ≤ C0T

2
0 . In particular,

α ≤ 1/4. The sum Σ can be written as Σ1 + Σ2, where Σ1 is the sum of
summands corresponding to the cylinders of length at most αT , and Σ2 is
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the sum over cylinders of length greater than αT . It follows from the above
estimate of ν(AΛ(λ)) that

Σ1 ≤ 2πT0λ
−1 · σ(αT ) ≤ 2πT0λ

−1 · 2C0αT,

Σ2 ≤ 2πT0λ
−1 · (αT )−1N(T ),

where N(T ) is the number of periodic cylinders of length at most T and of
area at least S/m. Then

2π ≤ 2πT0λ
−1(2C0αT + (αT )−1N(T )),

thus,
N(T ) ≥ (T−1

0 λ− 2C0αT )(αT ) = (8T 4
0 C0)−1T 2.

Consequently,

N2(M,T )/S ≥ N(T )/m ≥ (8mT 4
0 C0)−1T 2 = (8ml4mh̃m)−1s2S−2T 2.

To complete the proof, it remains to show that 8ml4mh̃m ≤ (600m)(2m)2m
.

If m = 1, then 8ml4mh̃m = 7 · 27 < 6004. If m = 2, then 8ml4mh̃m = 28 ·
80044

< 120044
. In the case m ≥ 3, we have (m/2)2m ≥ (3/2)6 > 10. Then

(2m)2m > 10 · 42m = 10 · 24m. It follows that (3/2)(2m)2m
> 25·24m

. Besides,
24m > 8m. Finally,

(8ml4mh̃m)−1(600m)(2m)2m
= (8m)−1 · 2−4·24m · (3/2)(2m)2m

>

(8m)−1 · 224m
> 224m · 2−4m > 24m > 1.

The theorem is proved.
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