1. Find all critical points of
\[f(x, y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 - 2xy \]
and classify them as local maximum, local minimum, or saddle points.

2. Sketch the region of integration and change the order of integration:
\[
\int_D f(x, y) \, dA = \int_0^1 \int_0^{\sqrt{x^2}} f(x, y) \, dy \, dx + \int_1^2 \int_0^{1 - \sqrt{1 - (x - 2)^2}} f(x, y) \, dy \, dx
\]

3. For the function \(f(x, y) = xy^2 + x^3 - 2xy \) the point \((x, y) = \left(\frac{1}{\sqrt{3}}, 1\right)\) is
 a. a local minimum
 b. a local maximum
 c. a saddle point
 d. not a critical point
 e. is a critical point but the Second Derivative Test fails.

4. Let \(f(x, y) = xy - 2x + 5 \).
 Find the absolute maximum and minimum values of \(f \) on the set \(D \) which is the closed triangular region with vertices \(A(0, 0), B(1, 1), C(0, 1) \).

5. For
\[
\int_0^3 \int_{y^2}^9 f(x, y) \, dx \, dy
\]
 (a) sketch the region of integration;
 (b) change the order of integration.

6. Find the volume of the solid that lies under the paraboloid \(z = x^2 + y^2 \), above the \(xy \)-plane, and inside the cylinder \(x^2 + y^2 = 4 \).

7. Let \(C \) be the line segment starting at \((0, 1, 1)\) and ending at \((3, 1, 4)\).
 a) Find parametric equations for \(C \).
 b) Find the mass of a thin wire in the shape of \(C \) with the density \(\rho(x, y) = x + y \).

8. A particle moves along the curve \(C : \vec{r}(t) = \langle t^3, t^2, t \rangle \) from the point \((1, 1, 1)\) to the point \((8, 4, 2)\) due to the force \(\vec{F}(x, y, z) = \langle z, y, x \rangle \). Find the work done by the force.
9. Find the absolute maximum and minimum values of \(f(x, y) = x^2y + xy^2 + y^2 - y \) on the set \(D \) which is the closed rectangular region in the \(xy \)-plane with vertices \((0, 0), (0, 2), (2, 0)\) and \((2, 2)\).

10. Evaluate the integral by reversing the order of integration:

\[
\int_0^3 \int_{y^2}^9 y \cos(x^2) \, dx \, dy.
\]

11. Find the mass of the lamina that occupies the region bounded by the parabola \(x = y^2 \) and the line \(y = x - 2 \) and has the density \(\rho(x, y) = 3 \).

12. Find the volume of the solid that lies under the paraboloid \(z = 4 - x^2 - y^2 \) and above the \(xy \)-plane.

13. Find the line integral of the vector field \(\mathbf{F}(x, y, z) = (-yz^2, xz^2, z^3) \) around the circle \(\mathbf{r}(t) = (2 \cos t, 2 \sin t, 8) \).

14. Find the mass of the quarter circle \(x^2 + y^2 \leq 9 \) for \(x \geq 0 \) and \(y \geq 0 \) if the density is \(\rho(x, y) = \sqrt{x^2 + y^2} \).

15. Find the center of mass of the quarter circle \(x^2 + y^2 \leq 9 \) for \(x \geq 0 \) and \(y \geq 0 \) if the density is \(\rho(x, y) = \sqrt{x^2 + y^2} \).

16. Let

\[
f(x, y) = 4xy^2 - x^2y^2 - xy^3.
\]

Find the absolute maximum and minimum values of \(f \) on the set \(D \) which is the closed triangular region with vertices \(A(0, 0), B(0, 6), C(6, 0) \).

17. Let

\[
f(x, y) = e^{-x^2-y^2}(x^2 + 2y^2).
\]

Find the absolute maximum and minimum values of \(f \) on the set \(D \) which is the disk \(x^2 + y^2 \leq 4 \).

18. Calculate the value of the integral \(\int \int_D (x^2 + y^2)^{3/2} \, dA \), where \(D \) is the region in the first quadrant bounded by the lines \(y = 0 \), \(y = \sqrt{3}x \) and the circle \(x^2 + y^2 = 9 \).