Solution of item 5 of section 3 of lecture notes regarding the method of integrating factor
5. Consider

$$
\begin{equation*}
y^{\prime}-3 x y=-x e^{x^{2}} . \tag{1}
\end{equation*}
$$

1. Find the general solution.

Solution
In our case $p(x)=-3 x$ and $g(x)=-x e^{x^{2}}$. Therefore, an integrating factor satisfies

$$
\mu^{\prime}=-3 x \mu
$$

So, we can take an integrating factor as

$$
\mu(x)=e^{\int(-3 x) d x}=e^{-\frac{3 x^{2}}{2}} .
$$

Multiply both sides of (1) by this $\mu(x)$. Then

$$
\left(e^{-\frac{3 x^{2}}{2}} y\right)^{\prime}=-x e^{x^{2}} e^{-\frac{3 x^{2}}{2}}=-x e^{-\frac{x^{2}}{2}}
$$

Integrate both parts with respect to x :

$$
e^{-\frac{3 x^{2}}{2}} y=\int-x e^{-\frac{x^{2}}{2}} d x=(*)
$$

Use u-substitution: $u=-\frac{x^{2}}{2}$. Then $d u=-x d x$ and
$(*)=\int e^{u} d u=e^{u}+C=e^{-\frac{x^{2}}{2}}+C$.
Therefore,

$$
e^{-\frac{3 x^{2}}{2}} y=e^{-\frac{x^{2}}{2}}+C
$$

Finally, multiplying both part by $e^{\frac{3 x^{2}}{2}}$ we get

$$
\begin{equation*}
y(x)=e^{\frac{3 x^{2}}{2}}\left(e^{-\frac{x^{2}}{2}}+C\right)=e^{x^{2}}+C e^{\frac{3 x^{2}}{2}} \tag{2}
\end{equation*}
$$

2. Find the solution satisfying the initial condition $y(0)=y_{0}$.
emphSolution
Plug $t=0$ and $y=y_{0}$ into general solution (2) to determine C :

$$
y_{0}=1+C \Rightarrow C=y_{0}-1
$$

So,

$$
\begin{equation*}
y(x)=e^{x^{2}}+\left(y_{0}-1\right) e^{\frac{3 x^{2}}{2}} \tag{3}
\end{equation*}
$$

3. How do the solutions behave as x becomes large (i.e $x \rightarrow+\infty$)? Does that behavior depend on the choice of the initial value y_{0} ?

emphSolution

The term $e^{\frac{3 x^{2}}{2}}$ dominates the term $e^{\frac{x^{2}}{2}}$ as x approach infinity so everything will depend on the sign of the coefficient $y_{0}-1$ near the dominating term:

- If $y_{0}>1$, then $y(x) \rightarrow+\infty$ as $x \rightarrow+\infty$;
- If $y_{0}<1$, then $y(x) \rightarrow-\infty$ as $x \rightarrow+\infty$;
- The transition from one behavior to another one occurs as $y_{0}=1$. In this case $y(x)=$ $e^{x^{2}} \rightarrow+\infty$ as $x \rightarrow+\infty$.

So, the behaviour depends on the initial conditions.

