Solution of item 5 of section 3 of lecture notes regarding the method of integrating factor

5. Consider

$$y' - 3xy = -xe^{x^2}. (1)$$

1. Find the general solution.

Solution

In our case p(x) = -3x and $g(x) = -xe^{x^2}$. Therefore, an integrating factor satisfies

$$\mu' = -3x\mu.$$

So, we can take an integrating factor as

$$\mu(x) = e^{\int (-3x) \, dx} = e^{-\frac{3x^2}{2}}$$

Multiply both sides of (1) by this $\mu(x)$. Then

$$\left(e^{-\frac{3x^2}{2}}y\right)' = -xe^{x^2}e^{-\frac{3x^2}{2}} = -xe^{-\frac{x^2}{2}}.$$

Integrate both parts with respect to x:

$$e^{-\frac{3x^2}{2}}y = \int -xe^{-\frac{x^2}{2}}\,dx = (*)$$

Use *u*-substitution: $u = -\frac{x^2}{2}$. Then du = -xdx and $(*) = \int e^u du = e^u + C = e^{-\frac{x^2}{2}} + C$. Therefore,

$$e^{-\frac{3x^2}{2}}y = e^{-\frac{x^2}{2}} + C$$

Finally, multiplying both part by $e^{\frac{3x^2}{2}}$ we get

$$y(x) = e^{\frac{3x^2}{2}} (e^{-\frac{x^2}{2}} + C) = \boxed{e^{x^2} + Ce^{\frac{3x^2}{2}}}$$
(2)

2. Find the solution satisfying the initial condition $y(0) = y_0$. emphSolution

Plug t = 0 and $y = y_0$ into general solution (2) to determine C:

$$y_0 = 1 + C \Rightarrow C = y_0 - 1$$

So,

$$y(x) = e^{x^2} + (y_0 - 1)e^{\frac{3x^2}{2}}$$
(3)

3. How do the solutions behave as x becomes large (i.e $x \to +\infty$)? Does that behavior depend on the choice of the initial value y_0 ?

$\operatorname{emphSolution}$

The term $e^{\frac{3x^2}{2}}$ dominates the term $e^{\frac{x^2}{2}}$ as x approach infinity so everything will depend on the sign of the coefficient $y_0 - 1$ near the dominating term:

- If $y_0 > 1$, then $y(x) \to +\infty$ as $x \to +\infty$;
- If $y_0 < 1$, then $y(x) \to -\infty$ as $x \to +\infty$;
- The transition from one behavior to another one occurs as $y_0 = 1$. In this case $y(x) = e^{x^2} \to +\infty$ as $x \to +\infty$.

So, the behaviour depends on the initial conditions.