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12. System of homogeneous linear equations with constant coefficients:
the role of eigenvalues and eigenvetors, the case of distinct eigenval-
ues(sec 7.3 and 7.5)

1. A number A is called an eigenvalue of matrix A if there exists a nonzero vector v such
that
Av = v,

and v is called an eigenvector corresponding to the eigenvalue \.

2. Example (corresponds to uncoupled systems). If A is a diagonal matriz,

A 0 ... 0
0 X ... O
0 0 ... M\,
then the numbers A, Ao, ..., A, are eigenvalues and the vectors
1 0 0
0 1 0
Vi = ) Vg = . ) ) Vn = )
0 0 1

are the corresponding eigenvectors.
3. Relation of diagonal matrices to uncoupled systems:

4. Fundamental Proposition. If )\ is an eigenvalue of matrix A and v is an eigenvector

corresponding to this eigenvalue then
X(t) = My

is a solution of the system X' = AX, i.e solution of the homogeneous linear system with

constant coefficients.
5. Geometric interpretation of Fundamental Proposition.

6. Eigenvalue are solutions of the following characteristic equation ( roots of the following

characteristic polynomial):
det(A — AI) =0.

What is the degree of this polynomial?
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7.

10.

11.

Trace of an n x n matrix A is the sum of it diagonal elements, denoted by trace(A) or

tr(A):

trace(A) = a1 + aga + .. . Gy

Show that the characteristic equation in the case n = 2 can be found as

A% — trace(A)\ + det(A) = 0.

Consequently to find eigenvalues of an 2 x 2 matric we need to solve a quadratic equation
(and more generally, to find eigenvalues of n x n matrix we need to find roots of a polynomial

of degree n).

Fact from Algebra: The quadratic equation a\® + b\ + ¢ = 0 has roots

7—b—|—\/b2—4ac \ 7—b—\/b2—4ac

2a 2 2a

A
which fall into one of 3 cases:

e two distinct real roots A\; # Ay (in this case D = b*> — dac > () [corresponds to part of

section 7.5 and can be applied to section 3.1

e two complex conjugate roots A\; = )y (in this case D = b? — 4ac < 0) [corresponds to a
part of section 7.6 and can be applied to section 3.3]

e two equal real roots \; = Ay (in this case D = b* — dac = 0) [[corresponds to a part of

section 7.8 and can be applied to section 3.4]

Real Distinct Eigenvalues

FACT from Linear algebra: If A has distinct eigenvalues \q, ..., N\, and v*, ..., v" are the
corresponding eigenvectors, then det(v',... v™) (i.e. the determinant of the matrix with jth
column equal to v7) does not vanish or, equivalently the collection of vectors vy, ..., v, form

a basis of R™

As a consequence, if If A has distinct real eigenvalues )i, . .., \, with eigenvectors v!, ... v®

, then

{e’\ltvl, e ,e’\"tvn}

is a fundamental set of solutions and the general solution is

X(t) = CreMivt + . 4 Cpetiv. (1)

REMARK If the eigenvalues are distinct but some of them are complex, the formula (1)

gives the general complex-valued solutions, so we need to make additional work to get the
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general real-valued solutions (will be discussed next week and corresponds to section 7.6 and

3.3, we also will make a thorough review of complex numbers there).

12. EXAMPLE. Consider the following system of ODEs:

¥y = =2z + 29

xh = 2x; — 3z

(a) Find general solution of (2).

1
(b) Find solution of (2) subject to the initial condition X (0) = ( A >

(c) What is behavior of the solution as t — +00?

13. Applications to second and higher order linear homo-
geneous equations (sections 3.2, 3.1 for second order, 4.1,

4.2 for higher order, the latter can be skipped)

1. Consider a linear homogeneous ODE

y' +pt)y +qt)y=0 (3)

with coefficients p and ¢ being continuous in an interval I. Then, as was already discussed
in section 9 item 7 of the notes, this equation can be transformed to the following system of

first order equations, by setting x1(t) := y(t), xo(t) = v/(¢):

{ zy = —q(t)z1 — p(t)zo. (4)

so that a function y(t) is a solution of (3) if and only of the vector function

is a solution of (4).

Then as a consequence of general theory for systems (section 10, items 16-18, and section
11, items 8-12) we get

2. Superposition Principle for second (and also higher) order equations reads: If

y1(t) and yo(t) are two solutions of (3), then

y(t) = Cryi(t) + Coya(t). (5)

is a solution of (3).
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3. Wronskian of two solutions Take two solutions y; (f) and y»(t) of (3). Then then

[ n(®) _ ya(t)
Xalt) = < (1) ) ) ( (D) )

are two solutions of (4). Therefore the 2 x 2 matrix ¥(¢) formed from this two solutions is

\If(t):< wlt) v 222) (6)

DEFINITION 1. The determinant of the matriz V(t) is called WRONSKIAN of the
functions y,(t) and yo(t) and it is denoted by W (y1,yq)(t):

= y1(t)ys(t) — y2(t)y1 (1)

1
/
1
4. As a consequence of Theorem 2 of section 10 we get

THEOREM 2. Let y1(t) and yo are solutions of (3). The general solution of (3) is given
by y(t) = Cry1(t) + Coya(t) if and only if the Wronskian W (yy,y2)(to) # 0 for some time

moment tg.

5. As discussed in the very first lecture cost and sint are solutions of y” +y = 0. Using the

developed theory, justify that y(t) = C cost+ Cysint is the general solution of this equation

6. Generalization for equation of order n (chapter 4) What is the Wronskian for n

solutions of an equation of nth order and the analog of Theorem (2) in this case?

The case of linear homogeneous equations of second order: charac-
teristic equation and general solution in the the case of real distinct

roots (sec. 3.1)
7. Consider
'+ by +ey=0 (7)

with constant real coefficients a, b, and ¢, a # 0. The corresponding system of first order

equation is

— _Cp, 0
Ty = axl aZEQ.
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8. Show that the characteristic equation for the eigenvalues of the matrix of the system (8) is

equivalent to
ar’> + b\ +c=0. 9)

Note that the characteristic equation (9) can be determined from the original second differ-
ential equation (7) simply by replacing y*) with A* (you relate to y itself as to the derivative
of y of order 0).

The case of two distinct real roots A\; and Ay of (9) < distinct real eigenvalues of the matrix

of the corresponding system (8). Therefore the general solution of (7) is

y(t) = CreMt + Coet. (10)
EXPLANATION

9. More elementary derivation of (9) and (10) without using the notions of eigenvalues and
eigenvectors: the nature of the equation (7) suggests that it may have solutions of the
formy = e*. Plug it to (7):

10. EXAMPLE. Consider
3y —1y —2y=0.
(a) Find general solution.

(b) Find solution satisfying the following initial conditions: y(0) = a, 3/(0) = 1, where «

is a real parameter.

(c) Find all « so that the solution of the corresponding IVP approaches 0 as ¢t — +o0.

11. How to generalize this theory to linear equation with constant coefficients of order n?



