12. System of homogeneous linear equations with constant coefficients: the role of eigenvalues and eigenvetors, the case of distinct eigenvalues(sec 7.3 and 7.5)

1. A number λ is called an eigenvalue of matrix A if there exists a nonzero vector \mathbf{v} such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

and \mathbf{v} is called an eigenvector corresponding to the eigenvalue λ.
2. Example (corresponds to uncoupled systems). If A is a diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

then the numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues and the vectors

$$
\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots, \quad \mathbf{v}_{\mathbf{n}}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right),
$$

are the corresponding eigenvectors.
3. Relation of diagonal matrices to uncoupled systems:
4. Fundamental Proposition. If λ is an eigenvalue of matrix A and \mathbf{v} is an eigenvector corresponding to this eigenvalue then

$$
\mathbf{X}(t)=e^{\lambda t} \mathbf{v}
$$

is a solution of the system $\mathbf{X}^{\prime}=A \mathbf{X}$, i.e solution of the homogeneous linear system with constant coefficients.
5. Geometric interpretation of Fundamental Proposition.
6. Eigenvalue are solutions of the following characteristic equation (roots of the following characteristic polynomial):

$$
\operatorname{det}(A-\lambda I)=0
$$

What is the degree of this polynomial?
7. Trace of an $n \times n$ matrix A is the sum of it diagonal elements, denoted by trace (A) or $\operatorname{tr}(A)$:

$$
\operatorname{trace}(A)=a_{11}+a_{22}+\ldots a_{n n}
$$

8. Show that the characteristic equation in the case $n=2$ can be found as

$$
\lambda^{2}-\operatorname{trace}(A) \lambda+\operatorname{det}(A)=0
$$

9. Consequently to find eigenvalues of an 2×2 matric we need to solve a quadratic equation (and more generally, to find eigenvalues of $n \times n$ matrix we need to find roots of a polynomial of degree n).
10. Fact from Algebra: The quadratic equation $a \lambda^{2}+b \lambda+c=0$ has roots

$$
\lambda_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad \lambda_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

which fall into one of 3 cases:

- two distinct real roots $\lambda_{1} \neq \lambda_{2}$ (in this case $D=b^{2}-4 a c>0$) [corresponds to part of section 7.5 and can be applied to section 3.1
- two complex conjugate roots $\lambda_{1}=\overline{\lambda_{2}}$ (in this case $D=b^{2}-4 a c<0$) [corresponds to a part of section 7.6 and can be applied to section 3.3]
- two equal real roots $\lambda_{1}=\lambda_{2}$ (in this case $D=b^{2}-4 a c=0$) [[corresponds to a part of section 7.8 and can be applied to section 3.4]

Real Distinct Eigenvalues

11. FACT from Linear algebra: If A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and $\mathbf{v}^{1}, \ldots, \mathbf{v}^{n}$ are the corresponding eigenvectors, then $\operatorname{det}\left(v^{1}, \ldots, v^{n}\right)$ (i.e. the determinant of the matrix with j th column equal to \mathbf{v}^{j}) does not vanish or, equivalently the collection of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n}

As a consequence, if If A has distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ with eigenvectors $\mathbf{v}^{1}, \ldots, \mathbf{v}^{n}$, then

$$
\left\{e^{\lambda_{1} t} \mathbf{v}^{1}, \ldots, e^{\lambda_{n} t} \mathbf{v}^{n}\right\}
$$

is a fundamental set of solutions and the general solution is

$$
\begin{equation*}
\mathbf{X}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}^{1}+\ldots+C_{n} e^{\lambda_{n} t} \mathbf{v}^{n} \tag{1}
\end{equation*}
$$

REMARK If the eigenvalues are distinct but some of them are complex, the formula (1) gives the general complex-valued solutions, so we need to make additional work to get the
general real-valued solutions (will be discussed next week and corresponds to section 7.6 and 3.3, we also will make a thorough review of complex numbers there).
12. EXAMPLE. Consider the following system of ODEs:

$$
\begin{align*}
x_{1}^{\prime} & =-2 x_{1}+x_{2} \\
x_{2}^{\prime} & =2 x_{1}-3 x_{2} \tag{2}
\end{align*}
$$

(a) Find general solution of (2).
(b) Find solution of (2) subject to the initial condition $X(0)=\binom{1}{4}$
(c) What is behavior of the solution as $t \rightarrow+\infty$?

13. Applications to second and higher order linear homogeneous equations (sections 3.2, 3.1 for second order, 4.1, 4.2 for higher order, the latter can be skipped)

1. Consider a linear homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{3}
\end{equation*}
$$

with coefficients p and q being continuous in an interval I. Then, as was already discussed in section 9 item 7 of the notes, this equation can be transformed to the following system of first order equations, by setting $x_{1}(t):=y(t), x_{2}(t)=y^{\prime}(t)$:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \tag{4}\\
x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}
\end{array}\right.
$$

so that a function $y(t)$ is a solution of (3) if and only of the vector function

$$
\mathbf{X}(t)=\binom{y(t)}{y^{\prime}(t)}
$$

is a solution of (4).
Then as a consequence of general theory for systems (section 10, items 16-18, and section 11, items 8-12) we get
2. Superposition Principle for second (and also higher) order equations reads: If $y_{1}(t)$ and $y_{2}(t)$ are two solutions of (3), then

$$
\begin{equation*}
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) \tag{5}
\end{equation*}
$$

is a solution of (3).
3. Wronskian of two solutions Take two solutions $y_{1}(t)$ and $y_{2}(t)$ of (3). Then then

$$
\mathbf{X}_{1}(t)=\binom{y_{1}(t)}{y_{1}^{\prime}(t)}, \mathbf{X}_{2}(t)=\binom{y_{2}(t)}{y_{2}^{\prime}(t)}
$$

are two solutions of (4). Therefore the 2×2 matrix $\Psi(t)$ formed from this two solutions is

$$
\Psi(t)=\left(\begin{array}{ll}
y_{1}(t) & y_{2}(t) \tag{6}\\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right)
$$

DEFINITION 1. The determinant of the matrix $\Psi(t)$ is called WRONSKIAN of the functions $y_{1}(t)$ and $y_{2}(t)$ and it is denoted by $W\left(y_{1}, y_{2}\right)(t)$:

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

4. As a consequence of Theorem 2 of section 10 we get

THEOREM 2. Let $y_{1}(t)$ and y_{2} are solutions of (3). The general solution of (3) is given by $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ if and only if the Wronskian $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ for some time moment t_{0}.
5. As discussed in the very first lecture $\cos t$ and $\sin t$ are solutions of $y^{\prime \prime}+y=0$. Using the developed theory, justify that $y(t)=C_{1} \cos t+C_{2} \sin t$ is the general solution of this equation
6. Generalization for equation of order n (chapter 4) What is the Wronskian for n solutions of an equation of nth order and the analog of Theorem (2) in this case?

The case of linear homogeneous equations of second order: characteristic equation and general solution in the the case of real distinct roots (sec. 3.1)
7. Consider

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{7}
\end{equation*}
$$

with constant real coefficients a, b, and $c, a \neq 0$. The corresponding system of first order equation is

$$
\begin{align*}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-\frac{c}{a} x_{1}-\frac{b}{a} x_{2} \tag{8}
\end{align*}
$$

8. Show that the characteristic equation for the eigenvalues of the matrix of the system (8) is equivalent to

$$
\begin{equation*}
a \lambda^{2}+b \lambda+c=0 \tag{9}
\end{equation*}
$$

Note that the characteristic equation (9) can be determined from the original second differential equation (7) simply by replacing $y^{(k)}$ with λ^{k} (you relate to y itself as to the derivative of y of order 0).
The case of two distinct real roots λ_{1} and λ_{2} of $(9) \Leftrightarrow$ distinct real eigenvalues of the matrix of the corresponding system (8). Therefore the general solution of (7) is

$$
\begin{equation*}
y(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2}} t . \tag{10}
\end{equation*}
$$

EXPLANATION

9. More elementary derivation of (9) and (10) without using the notions of eigenvalues and eigenvectors: the nature of the equation (7) suggests that it may have solutions of the form $y=e^{\lambda t}$. Plug it to (7):
10. EXAMPLE. Consider

$$
3 y^{\prime \prime}-y^{\prime}-2 y=0
$$

(a) Find general solution.
(b) Find solution satisfying the following initial conditions: $y(0)=\alpha, \quad y^{\prime}(0)=1$, where α is a real parameter.
(c) Find all α so that the solution of the corresponding IVP approaches 0 as $t \rightarrow+\infty$.
11. How to generalize this theory to linear equation with constant coefficients of order n ?

