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12. System of homogeneous linear equations with constant coefficients:

the role of eigenvalues and eigenvetors, the case of distinct eigenval-

ues(sec 7.3 and 7.5)

1. A number λ is called an eigenvalue of matrix A if there exists a nonzero vector v such

that

Av = λv,

and v is called an eigenvector corresponding to the eigenvalue λ.

2. Example (corresponds to uncoupled systems). If A is a diagonal matrix,

A =


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn


then the numbers λ1, λ2, . . . , λn are eigenvalues and the vectors

v1 =


1

0
...

0

 , v2 =


0

1
...

0

 , . . . , vn =


0

0
...

1

 ,

are the corresponding eigenvectors.

3. Relation of diagonal matrices to uncoupled systems:

4. Fundamental Proposition. If λ is an eigenvalue of matrix A and v is an eigenvector

corresponding to this eigenvalue then

X(t) = eλtv

is a solution of the system X′ = AX, i.e solution of the homogeneous linear system with

constant coefficients.
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5. Geometric interpretation of Fundamental Proposition.

6. Eigenvalue are solutions of the following characteristic equation ( roots of the following

characteristic polynomial):

det(A− λI) = 0.

What is the degree of this polynomial?

7. Trace of an n × n matrix A is the sum of it diagonal elements, denoted by trace(A) or

tr(A):
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trace(A) = a11 + a22 + . . . ann.

8. Show that the characteristic equation in the case n = 2 can be found as

λ2 − trace(A)λ+ det(A) = 0.

9. Consequently to find eigenvalues of an 2 × 2 matric we need to solve a quadratic equation

(and more generally, to find eigenvalues of n×n matrix we need to find roots of a polynomial

of degree n).

10. Fact from Algebra: The quadratic equation aλ2 + bλ+ c = 0 has roots

λ1 =
−b+

√
b2 − 4ac

2a
, λ2 =

−b−
√
b2 − 4ac

2a

which fall into one of 3 cases:

• two distinct real roots λ1 6= λ2 (in this case D = b2 − 4ac > 0) [corresponds to part of

section 7.5 and can be applied to section 3.1

• two complex conjugate roots λ1 = λ2 (in this case D = b2 − 4ac < 0) [corresponds to a

part of section 7.6 and can be applied to section 3.3]

• two equal real roots λ1 = λ2 (in this case D = b2 − 4ac = 0) [[corresponds to a part of

section 7.8 and can be applied to section 3.4]

Real Distinct Eigenvalues

11. FACT from Linear algebra: If A has distinct eigenvalues λ1, . . . , λn and v1, . . . ,vn are the

corresponding eigenvectors, then det(v1, . . . , vn) (i.e. the determinant of the matrix with jth

column equal to vj) does not vanish or, equivalently the collection of vectors v1, . . . ,vn form

a basis of Rn
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As a consequence, if If A has distinct real eigenvalues λ1, . . . , λn with eigenvectors v1, . . . ,vn

, then {
eλ1tv1, . . . , eλntvn

}
is a fundamental set of solutions and the general solution is

X(t) = C1e
λ1tv1 + . . .+ Cne

λntvn. (1)

REMARK If the eigenvalues are distinct but some of them are complex, the formula (1)

gives the general complex-valued solutions, so we need to make additional work to get the

general real-valued solutions (will be discussed next week and corresponds to section 7.6 and

3.3, we also will make a thorough review of complex numbers there).

12. EXAMPLE. Consider the following system of ODEs:

x′1 = −2x1 + x2

x′2 = 2x1 − 3x2
(2)

(a) Find general solution of (2).
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(b) Find solution of (2) subject to the initial condition X(0) =

(
1

4

)

(c) What is behavior of the solution as t→ +∞?

13. Applications to second and higher order linear homo-

geneous equations (sections 3.2, 3.1 for second order, 4.1,

4.2 for higher order, the latter can be skipped)

1. Consider a linear homogeneous ODE

y′′ + p(t)y′ + q(t)y = 0 (3)

with coefficients p and q being continuous in an interval I. Then, as was already discussed

in section 9 item 7 of the notes, this equation can be transformed to the following system of

first order equations, by setting x1(t) := y(t), x2(t) = y′(t):
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{
x′1 = x2

x′2 = −q(t)x1 − p(t)x2.
(4)

so that a function y(t) is a solution of (3) if and only of the vector function

X(t) =

(
y(t)

y′(t)

)
is a solution of (4).

Then as a consequence of general theory for systems (section 10, items 16-18, and section

11, items 8-12) we get

2. Superposition Principle for second (and also higher) order equations reads: If

y1(t) and y2(t) are two solutions of (3), then

y(t) = C1y1(t) + C2y2(t). (5)

is a solution of (3).

3. Wronskian of two solutions Take two solutions y1(t) and y2(t) of (3). Then then

X1(t) =

(
y1(t)

y′1(t)

)
,X2(t) =

(
y2(t)

y′2(t)

)
are two solutions of (4). Therefore the 2× 2 matrix Ψ(t) formed from this two solutions is

Ψ(t) =

(
y1(t) y2(t)

y′1(t) y′2(t)

)
(6)

DEFINITION 1. The determinant of the matrix Ψ(t) is called WRONSKIAN of the

functions y1(t) and y2(t) and it is denoted by W (y1, y2)(t):

W (y1, y2)(t) =

∣∣∣∣∣y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣∣ = y1(t)y
′
2(t)− y2(t)y′1(t)
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4. As a consequence of Theorem 2 of section 10 we get

THEOREM 2. Let y1(t) and y2 are solutions of (3). The general solution of (3) is given

by y(t) = C1y1(t) + C2y2(t) if and only if the Wronskian W (y1, y2)(t0) 6= 0 for some time

moment t0.

5. As discussed in the very first lecture cos t and sin t are solutions of y′′ + y = 0. Using the

developed theory, justify that y(t) = C1 cos t+C2 sin t is the general solution of this equation

6. Generalization for equation of order n (chapter 4) What is the Wronskian for n

solutions of an equation of nth order and the analog of Theorem (2) in this case?
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The case of linear homogeneous equations of second order: charac-

teristic equation and general solution in the the case of real distinct

roots (sec. 3.1)

7. Consider

ay′′ + by′ + cy = 0 (7)

with constant real coefficients a, b, and c, a 6= 0. The corresponding system of first order

equation is

x′1 = x2

x′2 = − c
a
x1 − b

a
x2.

(8)

8. Show that the characteristic equation for the eigenvalues of the matrix of the system (8) is

equivalent to

aλ2 + bλ+ c = 0. (9)

Note that the characteristic equation (9) can be determined from the original second differ-

ential equation (7) simply by replacing y(k) with λk (you relate to y itself as to the derivative

of y of order 0).
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The case of two distinct real roots λ1 and λ2 of (9)⇔ distinct real eigenvalues of the matrix

of the corresponding system (8). Therefore the general solution of (7) is

y(t) = C1e
λ1t + C2e

λ2t. (10)

EXPLANATION

9. More elementary derivation of (9) and (10) without using the notions of eigenvalues and

eigenvectors: the nature of the equation (7) suggests that it may have solutions of the

formy = eλt. Plug it to (7):
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10. EXAMPLE. Consider

3y′′ − y′ − 2y = 0.

(a) Find general solution.

(b) Find solution satisfying the following initial conditions: y(0) = α, y′(0) = 1, where α

is a real parameter.

(c) Find all α so that the solution of the corresponding IVP approaches 0 as t→ +∞.

11. How to generalize this theory to linear equation with constant coefficients of order n?


