25: Power Series, Taylor Series and Analytic Functions (section 5.1)

DEFINITION 1. A power series about $x=x_{0}$ (or centered at $x=x_{0}$), or just power series, is any series that can be written in the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

where x_{0} and a_{n} are numbers.
DEFINITION 2. A power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is said to converge at a point x if the limit $\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}\left(x-x_{0}\right)^{n}$ exists and finite.
REMARK 3. A power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ always converges at $x=x_{0}$.
EXAMPLE 4. For what x the power series $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots$ converges ?
$\sum_{n=0}^{m} x^{n}=$
If $|x|<1$
If $|x|>1$
Absolute Convergence: The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is said to converge absolutely at x if

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|\left|x-x_{0}\right|^{n} \text { converges. }
$$

If a series converges absolutely then it converges (but in general not vice versa).
EXAMPLE 5. The series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converges at $x=-1$, but it doesn't converges absolutely there:

$$
1-\frac{1}{2}+\frac{1}{3}-\ldots=\ln 2
$$

but the series of absolute values is the so-called harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots
$$

and it is divergent.
Fact: If the series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely at $x=x_{1}$ then it converges absolutely for all x such that $\left|x-x_{0}\right|<\left|x_{1}-x_{0}\right|$

This immediately implies the following:
THEOREM 6. For a given power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ there are only 3 possibilities:

1. The series converges only for $x=x_{0}$.
2. The series converges for all x.
3. There is $R>0$ such that the series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>$ R. We call such R the radius of convergence.

REMARK 7. In case 1 of the theorem we say that $R=0$ and in case 2 we say that $R=\infty$

EXAMPLE 8. What is the radius of convergence of the geometric power series $\sum_{n=0}^{\infty} x^{n}$?

How to find Radius of convergence: If $a_{n} \neq 0$ for any n and $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ exists, then

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

More generally,

$$
R=\frac{1}{\overline{\lim _{n \rightarrow \infty}} \sqrt[n]{\left|a_{n}\right|}},
$$

the Cauchy-Hadamard formula.
EXAMPLE 9. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^{2}}{3^{n}}(x+1)^{n}$.

The Taylor series for $f(x)$ about $x=x_{0}$
Assume that f has derivatives of any order at $x=x_{0}$. Then for any m

$$
f(x)=\sum_{n=0}^{m} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(m+1)}(c)}{(m+1)!}\left(x-x_{0}\right)^{m+1}
$$

where c is a number between x and x_{0}. The remainder converges to zero at least as fast as $\left(x-x_{0}\right)^{m+1}$ when $x \rightarrow x_{0}$.

Formally we can consider the following power series:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

the Taylor series of the function f about x_{0}.
The Taylor series may converge and may not converge in a neighborhood of x_{0} and even if it converges for any x close to x_{0} it may not converge to $f(x)$.

DEFINITION 10. The function f is called analytic at the point x_{0} if there exist a power series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

such that

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

for all x sufficiently close to x_{0}.
In this case, one can show that a_{n} must be equal to $\frac{f^{(n)}\left(x_{0}\right)}{n!}$. This implies:
The function f is analytic at the point x_{0} if its Taylor series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

converges to $f(x)$ for all x sufficiently closed to x_{0}.
EXAMPLE 11. From Example 3 it follows that $f(x)=\frac{1}{1-x}$ is analytic at 0. In general, it is analytic at any $x_{0} \neq 1$

EXAMPLE 12. More generally, any rational function $f(x)=\frac{Q(x)}{P(x)}$, where $P(x)$ and $Q(x)$ are polynomials without common linear factors (the latter can be always assumed, because the common factors can be canceled) is analytic at all points except zeros of the denominator $P(x)$

EXAMPLE 13. The functions $e^{x}, \sin x$ and $\cos x$ are analytic at any x. Here are their Taylor series at 0:

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

REMARK 14. Not any function having derivatives of any order at any point is analytic. For example, take

$$
f(x)= \begin{cases}e^{-\frac{1}{x}}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

Term by term differentiation If f is analytic at a point x_{0}, i.e $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ for x sufficiently close to x_{0}, then $f^{\prime}(x)$ is also analytic at x_{0} and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n}
$$

In other words, the derivative of a (convergent) power series is obtained by term by term differentiation of the series.

EXAMPLE 15. What is the Taylor expansion of $f^{\prime \prime}(x)$?

$$
\begin{gathered}
f^{\prime \prime}(x)=\left(\sum_{n=0}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n}\right)^{\prime}=\sum_{n=1}^{\infty}(n+1) n a_{n+1}\left(x-x_{0}\right)^{n-1}= \\
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}\left(x-x_{0}\right)^{n} .
\end{gathered}
$$

