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25: Power Series, Taylor Series and Analytic Functions (section 5.1)

DEFINITION 1. A power series about x = x0 (or centered at x = x0), or just power series, is

any series that can be written in the form
∞∑
n=0

an(x− x0)
n,

where x0 and an are numbers.

DEFINITION 2. A power series
∑∞

n=0 an(x − x0)
n is said to converge at a point x if the limit

lim
m→∞

m∑
n=0

an(x− x0)
n exists and finite.

REMARK 3. A power series
∞∑
n=0

an(x− x0)
n always converges at x = x0.

EXAMPLE 4. For what x the power series
∞∑
n=0

xn = 1 + x + x2 + x3 + . . . converges ?

m∑
n=0

xn =

If |x| < 1

If |x| > 1

Absolute Convergence: The series
∞∑
n=0

an(x− x0)
n is said to converge absolutely at x if

∞∑
n=0

|an| |x− x0|n converges.

If a series converges absolutely then it converges (but in general not vice versa).

EXAMPLE 5. The series
∞∑
n=1

xn

n
converges at x = −1, but it doesn’t converges absolutely

there:

1− 1

2
+

1

3
− . . . = ln 2

but the series of absolute values is the so-called harmonic series

1 +
1

2
+

1

3
+ . . .

and it is divergent.

Fact: If the series
∞∑
n=0

an(x− x0)
n converges absolutely at x = x1 then it converges absolutely for

all x such that |x− x0| < |x1 − x0|
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This immediately implies the following:

THEOREM 6. For a given power series
∞∑
n=0

an(x− x0)
n there are only 3 possibilities:

1. The series converges only for x = x0.

2. The series converges for all x.

3. There is R > 0 such that the series converges if |x− x0| < R and diverges if |x− x0| >
R. We call such R the radius of convergence.

REMARK 7. In case 1 of the theorem we say that R = 0 and in case 2 we say that R =∞

EXAMPLE 8. What is the radius of convergence of the geometric power series
∞∑
n=0

xn?

How to find Radius of convergence: If an 6= 0 for any n and lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
exists, then

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣
More generally,

R =
1

lim
n→∞

n
√
|an|

,

the Cauchy-Hadamard formula.

EXAMPLE 9. Find the radius of convergence of the power series
∞∑
n=0

n2

3n
(x + 1)n.

The Taylor series for f(x) about x = x0

Assume that f has derivatives of any order at x = x0. Then for any m

f(x) =
m∑

n=0

f (n)(x0)

n!
(x− x0)

n +
f (m+1)(c)

(m + 1)!
(x− x0)

m+1

where c is a number between x and x0. The remainder converges to zero at least as fast as

(x− x0)
m+1 when x→ x0.
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Formally we can consider the following power series:

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n,

the Taylor series of the function f about x0.

The Taylor series may converge and may not converge in a neighborhood of x0 and even if it

converges for any x close to x0 it may not converge to f(x).

DEFINITION 10. The function f is called analytic at the point x0 if there exist a power series
∞∑
n=0

an(x− x0)
n

such that

f(x) =
∞∑
n=0

an(x− x0)
n

for all x sufficiently close to x0.

In this case, one can show that an must be equal to
f (n)(x0)

n!
. This implies:

The function f is analytic at the point x0 if its Taylor series

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

converges to f(x) for all x sufficiently closed to x0.

EXAMPLE 11. From Example 3 it follows that f(x) =
1

1− x
is analytic at 0. In general, it is

analytic at any x0 6= 1

EXAMPLE 12. More generally, any rational function f(x) =
Q(x)

P (x)
, where P (x) and Q(x) are

polynomials without common linear factors (the latter can be always assumed, because the common

factors can be canceled) is analytic at all points except zeros of the denominator P (x)

EXAMPLE 13. The functions ex, sinx and cosx are analytic at any x. Here are their Taylor

series at 0:

ex =
∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . .

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2
+

x4

4!
− x6

6!
+ . . .

sinx =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .
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REMARK 14. Not any function having derivatives of any order at any point is analytic. For

example, take

f(x) =

e−
1
x , x > 0

0, x ≤ 0
.

Term by term differentiation If f is analytic at a point x0, i.e f(x) =
∞∑
n=0

an(x− x0)
n for

x sufficiently close to x0, then f ′(x) is also analytic at x0 and

f ′(x) =
∞∑
n=1

nan(x− x0)
n−1 =

∞∑
n=0

(n + 1)an+1(x− x0)
n

In other words, the derivative of a (convergent) power series is obtained by term by term differ-

entiation of the series.

EXAMPLE 15. What is the Taylor expansion of f ′′(x)?

f ′′(x) =

(
∞∑
n=0

(n + 1)an+1(x− x0)
n

)′
=
∞∑
n=1

(n + 1)nan+1(x− x0)
n−1 =

∞∑
n=0

(n + 2)(n + 1)an+2(x− x0)
n.


