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27: The Phase Plane: Linear Systems (section 9.1)

1. Consider a homogeneous linear system of 2 equations

X ′ = AX, X ∈ R2, det A 6= 0 (1)

As in chapter 1 the points for which the right-hand side of the system is equal to zero are

called equilibrium points. We also use the terminology of chapter 9 of the book where they

are called critical points ( another very common terminology is stationary points). For

system (1) the condition det A 6= 0 implies that X = 0 is the only its stationary point.

We want to know how the phase portrait (i.e the collection of integral curves/trajectories

of system (1)) looks like for different A (of course it will depend on the type of eigenvalues

and theit algebraic/geometric multiplicities).

Case 1. Distinct real eigenvalues.

2. Assume that λ1 and λ2 are the eigenvalues of matrix A so that they real and distinct. Assume

that v1 and v2 are the corresponding eigenvectors. The general solution is

X(t) = C1e
λ1tv1 + C2e

λ2tv2. (2)

In order to understand how the curves given in parametric form (2) looks like in the (x1, x2)-

plane let us first study how it looks like in “distorted” coordinates w.r.t. to the basis {v1, v2)

Explanation what does it mean coordinate with respect to a basis:

3. In this “distorted” coordinate system the parametric form for the curve (2) is given by :

y1(t) = C1e
λ1t (3)

y2(t) = C2e
λ2t (4)

Assuming that C1 6= 0 express y2 as a function of y1:

So,

y2 = Cyα1 ,where α =
λ2

λ1
, C =

C2

C
λ2/λ1
1

, if C1 6= 0, (5)

y1 = 0, if C1 = 0.
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Case 1a: Real Distinct Eigenvalues of the Same Sign ⇔ α > 0-The Node

4. Then the phase portrait in (y1, y2)-plane looks like (taking also into account the arrows /the

directions of motion along the trajectories):

5. in the original (x1, x2)- plane the phase portrait looks like:

6.

REMARK 1. The trajectories that are (pieces of) straight lines lie on the eigenlines.

REMARK 2. The tangent lines to the trajectories near the origin are close to the eigenline

corresponding to the eigenvalue which has smaller absolute value.

Case 1b: Real Distinct Eigenvalues of Opposite signs ⇔ α < 0-The Saddle

7. Then the phase portrait in (y1, y2)-plane looks like (taking also into account the arrows /the

directions of motion along the trajectories):

Case 2: Complex Eigenvalues

8. Assume that λ = α+ iβ is a complex eigenvalue of A and for definiteness assume that β > 0.

Assume that v = a + ib is a corresponding eigenvector. Then the general solution is

X(t) = C1Re(eλtv) + C2Im(eλtv) =

eαt
(
C1 cos(βt) + C2 sin(βt)

)
a + eαt

(
−C1 sin(βt) + C2 cos(βt)

)
b

(6)

9. So, in the coordinate (y1, y2) with respect to the basis (a,b) the trajectories of systems (1)

are given by the following parametric equations:

y1(t) = eαt
(
C1 cos(βt) + C2 sin(βt)

)
(7)

y2(t) = eαt
(
−C1 sin(βt) + C2 cos(βt)

)
(8)

Using the same method as in section 15 (on complex eigenvalues) we can transform these

equations to

y1(t) = eαtR cos(βt− δ) (9)

y2(t) = −eαtR sin(βt− δ) (10)
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Subcase 2a: α = 0-Center

10. Equations (9)-(10) have the form:

y1(t) = R cos(βt− δ) (11)

y2(t) = −R sin(βt− δ) (12)

This are the parametric equations of the circle in (y1, y2)-plane with the direction of motion

and angular velocity β.

11. Returning to the original coordinates (x1, x2) circles are transformed to ellipses with di-

rection of motion from b to a in the shortest way, because b corresponds to the positive

direction of y2-axis and a corresponds to the positive direction of y1-axis in the (y1, y2)-plane.

REMARK 3. The procedure how to determine the shape of these ellipses (i.e. the direction

of the principle axis and the ratio of the semiaxis) is discussed in Enrichment 9.

Subcase 2b: α < 0-Spiral sink (or stable focus)

12. The amplitude decays exponentially ⇒ Circles of the previous case are transformed to the

spirals entering the origin with the same rule for the direction of motion as in the previous

subcase.

Subcase 2c: α > 0-Spiral source (or unstable focus)

13. The amplitude grows exponentially ⇒ Circles of the previous case are transformed to the

spirals going out of the origin with the same rule for the direction of motion as in the subcase

2a.

14. Simple way to determine the direction of motion on the ellipses/ spirals (clock-

wise or counterclockwise) without calculation of an eigenvector

Assume that

A =

(
a11 a12

a21 a22

)
has complex eigenvalues.

If a21 < 0,then the motion is clockwise and if a21 > 0 the motion is counterclockwise.

Similarly, if a12 > 0,then the motion is clockwise and if a12 < 0 the motion is counterclock-

wise.

EXPLANATION:
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Case 3: Repeated Eigenvalues

Case 3a: Geometric multiplicity is equal to 2-Proper node/star point

15. If λ is eigenvalue of geometric multiplicity 2 , then the vectors of the standard basis e1, e2

(where e1 = (1, 0)T and e2 = (0, 1)T ) are eigenvectors and the general solution is

X(t) =

(
C1e

λt

C2e
λt

)

or , equialently x1(t) = C1e
λt, x2(t) = C2e

λt. Eliminating the parameter t, one get

x2 =
C2

C1

x1.

So, all trajectories lie on the straight lines through the origin

Case 3b: Geometric multiplicity is equal to 1-Improper node

16. Let v be a corresponding eigenvector, and w is a generalized eigenvector such that v =

(A− λI)w. Then the general solution is

X(t) = C1e
λtv + C2e

λt(w + tv) = eλt(C1 + C2t)v + C2e
λtw

So in the coordinates (y1, y2) with respect to the basis (v, w) the trajectories of the system

(1) are given by the following parametric equations:

y1(t) = C1e
λt(C1 + C2t) (13)

y2(t) = C2e
λt (14)

One can express y1 as a function of y2 if C2 6= 0 (for details see handwritten notes):

y1 = y2(α + β ln |y2|), (15)

where β = 1
λ

and α = C1

C2
− 1

λ
ln |C2|.

17. Then the trajectories will look as follows on (y1, y2) will look as follows:

18. Returning to the original (x1, x2)-plane v corresponds to the positive direction of y1-axis and

w corresponds to the positive direction of y2-axis.

19.

REMARK 4. The trajectories that are (pieces of) straight lines lie on the eigenline (gen-

erated by v).
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REMARK 5. The tangent lines to the trajectories near the origin are close to the eigenline

(generated by v.

20. Simple rule to determine the shape of the trajectory: Assume that

A =

(
a11 a12

a21 a22

)
has a repeated eigenvalue with geometric multiplicity 1.

(a) If a21 < 0 (or a12 > 0), then the direciton of motion on a part of the trajectory which

is far from the origin is clockwise.

(b) If a21 > 0 (or a12 < 0), then the direction of motion on a part of the trajectory which

is far from the origin is counterclockwise.

EXPLANATION:

Summary of types and stability properties of critical poinits of

planar homogeneous system with constant coefficients

21. Stability properties of linear systems X ′ = AX with det(A− λI) = 0 and detA 6= 0.

Eigenvalues, λ Type of Critical Point Stability

λ1 > λ2 > 0 Node(source) Unstable

λ1 < λ2 < 0 Node (sink) Asymptotically stable

λ2 < 0 < λ1 Saddle point Unstable

λ1,2 = α± iβ, α > 0 Spiral source Unstable

λ1,2 = α± iβ, α < 0 Spiral sink Asymptotically stable

λ1,2 = α± iβ, α = 0 Center Stable

λ1 = λ2 > 0 Proper or Improper node(source) Unstable

λ1 = λ2 < 0 Proper or Improper node(sink) Asymptotically stable

Note that in the last two items of the table proper node corresponds to the case when

the geometric multiplicity is equal to 2 and improper one corresponds to the case when the

geometric multiplicity is equal to 1.

The case of nonhomogeneous linear system with con-

stant coefficients

22. Consider the system

X ′ = AX + b,X, b ∈ R2 (16)
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If again det A 6= 0, there is the unique critical point X0, because the system AX0 + b = 0

is equivalent to AX0 = −b and it has the unique solution. So, b = −AX0 and (16) is

equivalent to

X ′ = AX − AX0 ⇔ (X −X0)′ = A(X −X0) (17)

Substitute u = X −X0 to obtain the homogeneous linear system

U ′ = AU (18)

23. U(t) is a solution of (18) if and only if x(t) = x0+u(t) is a solution of (16). Hence, the phase

portrait of (16) is obtained from the phase portrait of (18) by the shift (the translation) in

X0:

Critical damping as a bifurcation (a qualitative change

in the phase portrait under the small change of param-

eter

24. Damped unforced vibrations are given by the second order linear homogeneous equatiom

mu′′ + γu′ + ku = 0 (19)

The corresponding system is

x′1 = x2

x′2 = −
k

m
x1 −

γ

m
x2

(20)

Let γcrit be the critical damping for (19), γcrit = 2
√
mk (saee section 16).

Then for the system (20)

(a) If 0 < γ < γcrit, then the origin is a spiral sink;

(b) If γ = γcrit, then the origin is an improper nodal sink;

(c) If γ > γcrit, then the origin is a nodal sink,

The phase portrait in each case are as follows and you can see how the nodal sink is trans-

formed to the spiral sink through the improper nodal sink:


