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28: Nonlinear systems: stability (section 9.2) and phase

portrait (section 9.3)

1. Consider an arbitrary system of n first order differential equations:

X ′ = F (X), X ∈ Rn ⇔


x′1 = F1(x1, . . . , xn),

x′2 = F2(x1, . . . , xn),
...

x′n = Fn(x1, . . . , xn)

(1)

DEFINITION 1. A point X0 = (x01, . . . , x
0
n) ∈ Rn is called a critical (also stationary or

equilibrium) point of system (1), if

F (X0) = 0 ⇔


F1(x

0
1, . . . , x

0
n) = 0,

F2(x
0
1, . . . , x

0
n) = 0,

...

Fn(x01, . . . , x
0
n) = 0

(2)

2.

DEFINITION 2. A critical point X0 is called stable if for any neighbourhood 1 of X0 there

exists another (maybe smaller) neighbourhood V of X0 such that if trajectory X(t) of (1)

starts in V (i.e. X(0) ∈ V ), then it stays in U for any t ≥ 0.

3.

DEFINITION 3. A critical point X0 is called unstable, if it is not stable or equivalently,

making the negation of Definition 2: if there exist a neighbourhood U of X0 such that for

any neighbourhood V of x0 there exists a trajectory X(t) starting at V but going out of U

for some t > 0.

4.

DEFINITION 4. A critical point X0 is called asymptotically stable, if it is stable and

there exists a neighbourhood V of X0 such that for any trajectory X(t) starting at V , we

have X(t)→ X0 as t→ +∞. In addition, it is called globally asymptotically stable if one

can take V = Rn, i.e. X(t)→ X0 as t→ +∞ for any trajectory.

REMARK 5. A center in linear planar system is an example of a stable critical point which

is not asymptotically stable.

1By a neighbourhood of X0 we mean a ball around X0 ( a disk if n = 2 and an interval if n = 1).
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Stability of the origin for Linear Systems

5. Consider a linear system

X ′ = AX, X ∈ Rn, det A 6= 0. (3)

As was mentioned in the previous notes, in this case X0 = 0 is the only critical point.

The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by

Spec(A). From the form of solutions of (3) discussed in chapter 7 of the book we get:

THEOREM 6. In thre case when detA 6= 0 the following statements hold:

(a) X0 = 0 is (globally) asymptotically stable if and only if the real part of every eigenvalue

of A is negative , i.e. the spectrum of A lies in the the left half-plane of the complex

plane (but not on the imaginary axis);

(b) X0 = 0 is stable if and only if the real part of every eigenvalue of A is nonpositive, i.e.

the spectrum of A lies in the the left half-plane of the complex plane or on the imaginary

axis, and for each eigenvalue on the imaginary axis the geometric multiplicity is equal

to the algebraic multiplicity.

(c) X0 = 0 is unstable if and only if either there exists an eigenvalue of A with positive real

part or there exists an eigenvalue on the imaginary axis with the geometric multiplicity

being strictly less than the geometric multiplicity.

6.

COROLLARY 7. In the case of n = 2, detA 6= 0 the conditions (b) and (c) of the previous

Theorem are equivalent to the following:

(a) X0 = 0 is stable if and only if the real part of every eigenvalue of A is nonpositive,

i.e. the spectrum of A lies in the the left half-plane of the complex plane or on the

imaginary axis.

(b) X0 = 0 is unstable if and only if there exists an eigenvalue of A with positive real part.

Nonlinear (locally linear) Systems: Linearization Prin-

ciple

7. Let for simplicity n = 2. We will use coordinates (x, y) in R2. Then system (1) consists of

two equations:
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{
x′ = f(x, y),

y′ = g(x, y),
(4)

Assume that (x0, y0) is a stationary point of (4), i.e.

{
f(x0, y0) = 0,

g(x0, y0) = 0,
(5)

Expand functions f and g into the Taylor expansions around (x0, y0) up to a linear term:

8. Substituting these expansions into the right hand-side of (4) and ignoring the remaining

terms (as terms of smaller order than linear terms near (x0, y0)) we get

9. Making a substitution u = x− x0, v = y − y0 we get the following system:

{
u′ = ∂f

∂x
(x0, y0)u+ ∂f

∂y
(x0, y0)v,

v′ = ∂g
∂x

(x0, y0)u+ ∂g
∂y

(x0, y0)v,
(6)

This system is a linear system in u and v with the matrix

J(x0, y0) =

(
∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)
∂g
∂x

(x0, y0)
∂g
∂y

(x0, y0)

)
. (7)

DEFINITION 8. System (6) is called the linearization of system (4) at the critical point

(x0, y0). The matrix (7) is called the Jacobi matrix of system (4) at the point (x0, y0).

10. The intuition is that since we ignore very small terms when passing from (4) to (6) the

behaviour of the trajectories of the original nonlinear system (4) near (x0, y0) is similar

to the behaviour of the trajectories of its linearization (6) and the latter we studied in

the previous section based on Chapter 7. However, we need an extra assumption on the

eigenvalues of the Jacobi matrix J(x0, y0).

THEOREM 9 (Linearization Principle). If the Jacobi matrix J(x0, y0) of a critical point

(x0, y0) of system (4) does not have eigenvalues on the imaginary axis ( i.e. no eigenvalues

with zero real part), then the stability properties of (x0, y0) are the same as stability property

of the origin of the origin for its linearization (6) at (x0, y0).

REMARK 10. Note that we already proved the Linearization Principle in the case n = 1,

when we discussed the phase line (see section 8, item 6 there).

11. Under the same assumptions as in Theorem 9 the phase portrait of the nonlinear system (1)

near the criticical point (x0, y0) looks similar (as a small distortion) of the phase portrait of

the linearization (6).
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For example, if the Jacobi matrix J(x0, y0) has two real eigenvalues λ1 and λ2 of opposite

signs, λ1 < 0 and λ2 > 0, then there exist two curves Γ− amd Γ+ in a neighbourhood U of

(x0, y0) passing through (x0, y0) and satisfying the following properties:

(a) If
(
x(0, y(0)

)
∈ Γ+, then

(
x(t), y(t)

)
→ (x0, y0) and t→ +∞;

(b) If
(
x(0, y(0)

)
∈ Γ−, then

(
x(t), y(t)

)
→ (x0, y0) and t→ −∞.

In addition, the tangent line to the curve Γ− at (x0, y0) coincides with the eigenline of λ1 < 0

and the tangent line to the curve Γ+ at (x0, y0) coincides with the eigenline of λ2 > 0.

The curves Γ− and Γ+ are called the stable and unstable separatrices of the saddle critical

point (x0, y0), respectively. The phase portrait of the original system (4) near (x0, y0) is a

“distortion” of the plane portrait of its linearization , i.e. looks as the phase portrait of the

saddle:

12. Why the case of Reλ = 0 is excluded from Theorem (9)? This cases is sensitive to nonlinear

perturbations as a threshold between stability and instability, so in this case the stability

cannot be decided by the linearization as the following example shows:

EXAMPLE 11. Compare stability properties of the origin of the system{
x′ = y,

y′ = −x+ εy3,
(8)

and its linearization for all values of parameter ε.

13.

EXAMPLE 12 (a model of competing species, section 9.4). Consider the following system{
x′ = x(7− x− 2y)

y′ = y(5− y − x)
(9)

(a) Why is this system related to competing species?

(b) Determine all critical points of (9).

(c) For each critical point find the corresponding linearization and determine the type of

each critical point and their stability properties (i.e. whether they are stable, asymp-

totically stable, or unstable)?

(d) Sketch the phase portrait of system (9) in the first quadrant.

(e) System (9) corresponds to a model of competing species. Based on your analysis in the

previous item, answer the following question: does the coexistence occurs in the model

given by system (9)?
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Discussion of the general competing species model (section 9.4)

14. Consider {
x′ = x(ε1 − σ1x− α1y)

y′ = y(ε2 − σ2y − α2x)
(10)

under assumption that the algebraic linear system

{
σ1x+ α1y = ε1

α2x+ σ2y = ε2
(11)

has exactly one solution and it lies in the first quadrant. In particular, this implies σ1σ2 −
α1α2 6= 0.

15. the following two lines play important role:

(a) x-nullcline is given by the equation σ1x+ α1y = ε1;

(b) y-nullcline is given by the equation α2x+ σ2y = ε2;

Consider the following two cases separately:

16. Case 1: σ1σ2 − α1α2 < 0 (no co-existence)

17. Case 1: σ1σ2 − α1α2 > 0 (co-existence)


