9: Systems of FIRST Order Equations and their relation to higher order equations (section 7.1)

1. A first order system of ordinary differential equations (ODEs):

$$
\begin{align*}
x_{1}^{\prime} & =F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime} & =F_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \tag{1}\\
& \vdots \\
x_{n}^{\prime} & =F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

2. A set of differentiable functions $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ satisfying the system (1) is called a solution of the system (1).
3. System of ODE using a vector notation:

$$
\mathbf{X}=\left(\begin{array}{c}
x_{1} \tag{2}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{F}=\left(\begin{array}{c}
F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
F_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right)
$$

Then the system (1) can be written as

$$
\begin{equation*}
\mathbf{X}^{\prime}=\mathbf{F}(t, \mathbf{X}) . \tag{3}
\end{equation*}
$$

Symbolically this is exactly the same expression as for a single first order equation.
DEFINITION 1. The system (1) is called autonomous if the right-hand side of it is independent of t, i.e. is of the form $\mathbf{F}(\mathbf{X})$,

$$
\begin{equation*}
\mathbf{X}^{\prime}=\mathbf{F}(x) . \tag{4}
\end{equation*}
$$

and non-autonomous otherwise.
REMARK 2. Autonomous systems are special first order systems. However, any nonautonomous system on n unknown functions $\left(x_{1}, \ldots, x_{n}\right)$ of t can be seen as an autonomous system in $n+1$-unknown functions $\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)$ such that $x_{0}^{\prime}(t)=1$. Namely, we consider the following system of $n+1$ equations of $n+1$ unknown functions:

The very first equation of this system implies that if $x_{0}(0)=0$ then $x_{0}(t)=t$ and then
the column vector function X as in (2) is the solution of the original system (1). Therefore conceptually we can restrict ourselves to autonomous systems only.

4. Vector fields and autonomous first order systems:

5. A vector field F on \mathbb{R}^{n} : at each point \mathbf{X} of \mathbb{R}^{n} a vector $\mathbf{F}(\mathbf{X})$ starting at this point \mathbf{X} is given.
6. An integral curve (integral trajectory $\mathbf{X}(t)$ of a vector field \mathbf{F} is a curve in \mathbb{R}^{n} such that the velocity $\mathbf{X}^{\prime}(t)$ to this curve at every its point $\mathbf{X}(t)$ (or, equivalently, at every time moment $t)$ coincides with the vector fields \mathbf{F} at this point, i.e. with the vector $\mathbf{F}(\mathbf{X}(t))$.

In other words,

$$
\mathbf{X}^{\prime}(t)=\mathbf{F}(\mathbf{X}(t))
$$

i.e. $\mathbf{X}(t)$ is an integral curve of the field F if and only if it is a solution of the autonomous equation (4).

REMARK 3. One can define the analog if direction field for nonautonomous system (1): it is a direction field in \mathbb{R}^{n+1} such that the line segment is generated by the vector field of the corresponding autonomous system in \mathbb{R}^{n+1} as described in Remark 2.
7. To any autonomous system of n equations with n unknown function one can assign a vector field in \mathbb{R}^{n} and vice versa, to any vector field \mathbf{F} in \mathbb{R}^{n} corresponds an autonomous system (4). Then \mathbb{R}^{n} is called the phase space of the system (4). More generally, the vector field may be defined not on the whole \mathbb{R}^{n} but in some region R of \mathbb{R}^{n} or, for example, on a surface or higher dimensional analog of a surface S (like a sphere, a torus etc, depending on a model) in \mathbb{R}^{n} (in the latter case the vector field must be tangent to such surface). In this case the sets R and S are also called phase spaces.

The phase portrait of a system is a representative sketch of integral curves of the system on the phase space.
8. For $n=1$ we have just one equation and the phase space in the autonomous case is just a line \mathbb{R} (what we called the phase line in the previous section). The nonzero vectors tangent to \mathbb{R} have only two directions, positive and negative, so those directions were the only what matters when we analyzed the behaviour of the solutions. For $n>1$ there are much richer variety of how the phase portrait may look like compared to the case when $n=1$.

Here are several examples of sketch of the vector fields corresponding to a given system of two equations using pplane. The corresponding phase portraits can be sketched by drawing several representative phase lines. I mark each example with certain name but at this moment you do not have to put any attention on those names

EXAMPLE 4 (saddle point).

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}+x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right.
$$

[spiral source]
EXAMPLE 5.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}+x_{2} \\
x_{2}^{\prime}=-x_{1}+x_{2}
\end{array}\right.
$$

EXAMPLE 6 (center).

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=3 x_{1}+4 x_{2} \\
x_{2}^{\prime}=-4 x_{1}-3 x_{2}
\end{array}\right.
$$

EXAMPLE 7 (competing species).

$$
\left\{\begin{array}{l}
x^{\prime}=x(7-x-2 y) \\
y^{\prime}=y(5-y-x)
\end{array}\right.
$$

We will learn how to solve explicitly systems in Examples 4-6, which are linear homogeneous systems with constant coefficients and how to analyze the nonlinear system in Example 7 based on the theory of linear systems (without the knowledge of this theory the software will not be really useful).
9. Existence and Uniqueness Theorem for IVP defined by a system: Consider the IVP:

$$
\begin{align*}
x_{1}^{\prime} & =F_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime} & =F_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vdots \\
x_{n}^{\prime} & =F_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \tag{5}\\
x_{1}\left(t_{0}\right) & =x_{1}^{0} \\
x_{2}\left(t_{0}\right) & =x_{2}^{0} \\
& \vdots \\
x_{n}\left(t_{0}\right) & =x_{n}^{0}
\end{align*}
$$

is literally the same as Theorem 3 in section 7 of the notes devoted to single equation: If each of the functions $F_{1}, F_{2}, \ldots, F_{n}$ and the partial derivatives $\frac{\partial F_{1}}{\partial x_{k}}, \frac{\partial F_{2}}{\partial x_{k}}, \ldots, \frac{\partial F_{n}}{\partial x_{k}}(1 \leq k \leq n)$
are continuous in a region

$$
R=\left\{\alpha<t<\beta, \alpha_{1}<x_{1}<\beta_{1}, \alpha_{2}<x_{1}<\beta_{2}, \ldots, \alpha_{n}<x_{n}<\beta_{n}\right\}
$$

and the point $\left(t_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$ belongs to R, then there is an interval $\left(t_{0}-h, t_{0}+h\right)$ in which there exists a unique solution of the IVP (5).

How to transform a scalar ODE or order n to a system of n first order equations

10. Any scalar ODE equation of order n,

$$
y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)
$$

can be transformed to a system of n DE of the first order by introducing derivatives up to order $n-1$ as new variables.
11. To transform the following n-th order IVP,

$$
\begin{align*}
& y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right), \tag{6}\\
& y\left(t_{0}\right)=\alpha_{0}, \quad y^{\prime}\left(t_{0}\right)=\alpha_{1}, \ldots, \quad y^{(n-1)}\left(t_{0}\right)=\alpha_{n-1}
\end{align*}
$$

into the system of first order equations we set

$$
\begin{gathered}
x_{1}(t)=y(t) \\
x_{2}(t)=y^{\prime}(t) \\
\vdots \\
x_{n}(t)=y^{(n-1)}(t)
\end{gathered}
$$

to get

$$
\begin{align*}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \tag{7}\\
& \vdots \\
& x_{n}^{\prime}=f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

subject to

$$
x_{1}\left(t_{0}\right)=\alpha_{0}, \quad x_{2}\left(t_{0}\right)=\alpha_{1}, \ldots, \quad x_{n}\left(t_{0}\right)=\alpha_{n-1} .
$$

12. Consider the following ODE of unforced undamped vibration:

$$
\begin{equation*}
y^{\prime \prime}+y=0 . \tag{8}
\end{equation*}
$$

Transform (8) into a system of first order ODE. Is the obtained system autonomous?
13. Transform the equation

$$
y^{(3)}+(\sin t) y^{\prime \prime}+e^{t}\left(\left(y^{\prime}\right)^{2}+y^{2}\right)=0
$$

to the system of differential equations.
14. An obvious but very important remark is:

REMARK 8. Afunction $y(t)$ is a solution of the equation (6) if an only if

$$
\mathbf{X}(t)=\left(\begin{array}{c}
y(t) \\
y^{\prime}(t) \\
\vdots \\
y^{(n-1)}(t)
\end{array}\right)
$$

is a solution of the corresponding first order system (7).
This simple passage from single differential equation (6) of higher order to first-order system (7) allows us to consider the theory of second order and even higher order equations discussed in chapter 3 and 4 of the textbook as a particular case of the theory of systems of first order equation discussed in chapter 7. So, instead of first covering chapter 3 and then repeating the same in more general setting of chapter 7 we will start now with chapter 7 and treat the material of chapter 3 and (and even of chapter 4) simultaneously.

