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15: The case of complex eigenvalues/roots of the charac-

teristic equation (sections 3.3 and 7.6 combined).

Review of complex numbers

1. Equation λ2 + 1 = 0 doesn’t have real roots! What to do? Introduce a new number i, the

imaginary unit, such that i2 = −1. So, λ2 + 1 = 0 implies that λ = ±
√
−1 = ±i.

2. A complex number z is a pair of two real numbers x and y or geometrically a point (x, y) in

the plane written in the form x+ iy.

Draw the following complex numbers on the plane

(a) i

(b) −1− i

3. What is more important one can define the addition and multiplication of any two complex

numbers z1 = x1 + iy1 and z2 = x2 + iy2 can be defined in the following natural way:

(a) Addition

z1 + z2 = (x1 + x2) + i(y1 + y2)

Geometrically, it is the addition of the correspondong position vectors in the plane

(b) Multiplication: just use the distributive law and the fact that i2 = −1 to define

z1z2 =
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EXAMPLE 1. Calculate (1 + i)2 , i.e. represent it in the form a+ ib

4. (a) Real part of z = x+ iy: Rez := x.

(b) Imaginary part of z = x+ iy: Imz := y.

(c) Complex conjugate of z = x+ iy is the number z̄ := x− iy.

(d) Real and imaginary parts in terms of complex conjugates:

Rez =
z + z̄

2
, Imz =

z − z̄
2i

. (1)

(e) zz̄ = x2 + y2.

EXAMPLE 2. How to divide complex numbers: Calculate
5 + 4i

3 + 2i

5. Complex numbers in polar coordinates

Let (r, θ) are polar coordinates: x = r cos θ, y = r sin θ. Then

z = x+ iy = r(cos θ + i sin θ)

The common terminology:

|z| = r =
√
x2 + y2 is called the modulus of complex numbers.

arg z = θ is called the argument of the complex number z (it is not defined uniquely but up

to 2πk, where k is an integer).

EXAMPLE 3. Given a complex number z find |z| and arg z (for the latter we are interested

in the value in the interval [0, 2π)).
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(a) z=i

(b) z=1+i

6. Multiplication of complex numbers in polar coordinates

Reminder from trigonometry:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 (2)

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2 (3)

Proof of (2): equivalence of two definition of the dot product:

Take two vectors

a = 〈cos θ1, sin θ1〉, b = 〈cos(−θ2), sin(−θ2)〉 = 〈cos(θ2),− sin(θ2)〉.

Then, on one hand, |a| = |b| = 1 and the angle between a and b is equal to θ1 + θ2.

Therefore,

a · b = cos(θ1 + θ2).

On the other hand, using the formula for the dot product via components:

a · b = cos θ1 cos θ2 − sin θ1 sin θ2. �

7. If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).

Then

z1z2 =

Conclusion
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|z1z2| = |z1||z2|

arg(z1z2) = arg z1 + arg z2. (4)

EXAMPLE 1 (revisited): Calculate (1 + i)2 using polar coordinates

8. Preliminary of the Euler formula

If f(θ) := cos θ + i sin θ, then by (4)

f(θ1)f(θ2) = f(θ1 + θ2).

So, fθ) behaves like an exponential function (see the Euler formula (5) below for more exact

statement).

9. The complex exponential via Taylor Expansion.

(a) Recall that the Taylor expansion of ex is

(b) Nothing prevent us from replacing real x by a complex z in this formula to define ez:

However we need a better definition of exponential not using series.

10. The Euler formula and the exponent of the complex number via the Euler formula.

eiy = cos y + i sin y (5)

EXPLANATION: Taylor expansions of
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(a) cos y =

(b) sin y =

(c) eiy =

1, i, i2 = , i3 = , i4 = . . .

�

Therefore,

ex+iy =

CONCLUSION:

ex+iy = ex(cos y + i sin y) (6)

Re
(
ex+iy

)
= ex cos y, Im

(
ex+iy

)
= ex sin y. (7)

11. Similarly to a real r for any complex r

d

dt
eλt = λeλt. (8)

(a) One way to prove this identity is to use term by term differentiation of the Taylor series

for ert:
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REMARK 4. The great thing in this method is that it works exactly in the same way

for the exponential of matrices and therefore gives similar result for systems of first

order equation as we will see studying chapter 7

(b) Another way to prove (8) is to use (6) : if r = α + iω. Then by (6)

eλt = eαt
(

cos(ωt) + i sin(ωt)
)
. (9)

Differentiate this identity to get (8) (try!, differentiate the real and the imaginary part).

Second order homogeneous equations with constant coefficients:

the case of two complex conjugate roots λ1 = λ2 for the character-

istic equation(in this case D = b2 − 4ac < 0)

12. Now we return to a second order linear homogeneous equation with constant real coefficients

ay′′ + by′ + cy = 0 (10)

Recall that the characteristic equation of (10) is

aλ2 + bλ+ c = 0. (11)

We consider the case

D = b2 − 4ac < 0.

λ1,2 =
−b±

√
D

2a
= − b

2a
± i
√
|D|

2a
=: α± iω

Note that λ2 = λ̄1. From now one let λ = λ1.

13. Since in this case r 6= r̄ , exactly as in the case of distinct real roots two particular solutions

y1 = eλt, y2 = eλ̄t.

form a fundamental set of solutions.

However, this are complex-valued solutions and we are interested in the real valued

one. So the answer for the general solution C1e
(α+iω)t + C2e

(α−iω)t is formally true but not

acceptable in this course.

14. Note that

eλt = eαt
(

cos(ωt) + i sin(ωt)
)

eλ̄t = eαt
(

cos(ωt)− i sin(ωt)
)
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and so eλ̄t = eλt).

By Superposition Principle from the previous formulas (see also formula (1) above) the

following linear combinations are solutions as well

Re
(
eλt
)

= 1
2
(eλt + eλ̄t) = eαt cos(ωt), Im

(
eλt
)

=
1

2i
(eλt − eλ̄t) = eαt sin(ωt) (12)

Note that these solutions are real-valued functions.

15. Solutions {eαt cos(ωt), eαt sin(ωt)} is a fundamental set of solutions, i.e. that general solution

of (10) has a form

y(t) = C1e
αt cos(ωt) + C2e

αt sin(ωt) (13)

This follows from the calculation of Wronskian (check!) or from the fact that the complex

valued solutions eλt and eλ̄t form a fundamental set of solutions and relations (12)

16. Solve the following two differential equations which are important in applied mathematics:

y′′ + ω2y = 0 and y′′ − ω2y = 0,

where ω is a real positive constant.

17. Alternative form of solution (13):

y(t) = eαtR cos(ωt− δ), (14)

where

R =
√
C2

1 + C2
2 , cos δ =

C1√
C2

1 + C2
2

=
C1

R
, sin δ =

C2√
C2

1 + C2
2

=
C2

R
.

Note that tan δ = C2/C1.
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18. Application: Mechanical unforced vibration: a mass hanging from a spring (more details in

Section 3.7 that will be discussed later ).

• λ = 0 corresponds to undamped free vibration (simple harmonic motion)

• λ < 0 corresponds to damped free vibration

• R is called the amplitude of the motion

• δ is called the phase, or phase angle, and measures the displacement of the wave from

its normal position corresponding to δ = 0.

• T =
2π

ω
is the quasi-period of the motion.

19. Consider

y′′ + 2y′ + 3y = 0. (15)

(a) Find general solution.

(b) Find solution of (15) subject to the initial conditions

y(0) = 2, y′(0) = 1.
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(c) Determine α, ω > 0, R > 0 and δ ∈ [0, 2π) so that the solution obtained in the previous

item can be written in the form eαtR cos(ωt− δ), sketch the graph of the solution, and

describe the behavior of the solution as t increases.
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Linear homogeneous systems with constant coefficients: the case

of complex eigenvalues

20. Let A be an n× n matrix with real entries. It may happen that the characteristic equation

det(A − λI) = 0 has a complex root λ, i.e. λ is a complex eigenvalue of A. Then a

correcponding eigenvector v has complex components, because it satisfy the linear algebraic

system of equations (A− λI)v = 0 and the matrix A− λI already have complex entries on

its diagonal.

21. If λ is a complex eigenvalue of the real matrix A with an eigenvector v, then λ̄ (the com-

plex conjugate of λ) is an eigenvalue of A with an eigenvector v̄. In other words complex

eigenvalues of a real matrix A come in pair of complex conjugate ones.

22. Hence if λ is a complex eigenvalue of a real matrix A with an eigenvector v then both eλtv and

eλ̄tv̄ are solutions of the system X ′ = AX. These solutions are vector values functions have

complex components. Then superposition principle, the vector valued functions Re(eλtv)

and Im(eλtv), i.e. the vector valued function of the real parts of the components of eλtv and

the vector valued function of the imaginary parts of the components of eλtv are solution of

the same system X ′ = AX:
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23. Note that any vector v with complex component can be uniquely represented as v = a+ ib

where a and b are vectors with real components, the real and imaginary parts of v respec-

tively.

24. If λ = α+ iω, β 6= 0 is an eigenvalue of a real matrix A and v = a + ib is an eigenvector of

λ, where a and b are vectors with real components then

etλv = i.e.

Re(eλtv) = eαt(cos(ωt) a− sin(ωt) b),

Im(eλtv) = eαt(sin(ωt) a + cos(ωt) b)

25. Case n = 2. If λ is a complex eigenvalue of the coefficient matrix A in the homogeneous

system X ′ = AX and v is a corresponding eigenvector then

• {
eλtv, eλ̄tv̄

}
(16)

is a fundamental set of (complex) solutions of the system X ′ = AX.

• {
Re(eλtv), Im(eλtv)

}
(17)

is a real fundamental set of solutions of the system X ′ = AX.

We are interested in real solutions, so when you are asked for the general solu-

tions then it means real general solutions and you have to convert (16) into (17)

and take the linear combination of what you obtained.

26. Example. Consider

(
3 1

−5 1

)
(a) Find general solution of the system X ′ = AX.
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(b) Find solution subject to the initial conditions x1(0) = 2, x2(0) = 3.

27. Case n = 3. If α ± iω are complex eigenvalue of the coefficient matrix A, then the third

eigenvalue must be real (denote it by λ). Let v and w be eigenvectors corresponding to

α + iβ and λ, respectively. Then{
Re(eλtv), Im(eλtv), eλtw

}
is a real fundamental set of solutions of the system X ′ = AX.


