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17. The case of equal (or repeated) roots for second order homogeneous
equations (section 3.4) and toward the case of repeated eigenvalues for
systems: matrix exponential (section 7.7)

The case of equal (or repeated) roots for second order homogeneous
equations (section 3.4)

1. Recall that the characteristic equation of a linear homogeneous equation with constant real
coefficients

ay′′ + by′ + cy = 0 (1)

is
aλ2 + bλ+ c = 0. (2)

Assume that

D = b2 − 4ac = 0⇒ λ1 = λ2 = − b

2a
:= λ

So, we know how to one particular solution y1(t) = eλt.

2. How to choose a second particular solution y2 such that the set {y1, y2} will be fundamental, i.e.
W (y1, y2) 6= 0?:

The answer: y2(t) = teλt so that the general solution is

y(t) = C1e
λt + C2te

λt = (C1 + C2t)e
λt.

3. Here is a “Physics style” explanation , which considers the case of repeated roots as a limiting
case of the case of distinct real roots (I will post two other explanations, one based on
factorization of second order differential operator and another based on the method of reduction of
order, in the Enrichment)

EXPLANATION

4. Find the general solution of y′′ − 6y′ + 9y = 0.
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SUMMARY:

Solution of linear homogeneous equation of second order with constant coefficients

ay′′ + by′ + cy = 0

Sign of Roots of characteristic General solution
D = b2 − 4ac polynomial aλ2 + bλ+ c = 0

D > 0 two distinct real roots λ1 6= λ2 y(t) = C1e
λ1t + C2e

λ2t

D < 0 two complex conjugate roots λ1 = λ2 : y(t) = C1e
αt cos (ωt) + C2e

αt sin (ωt)
λ1,2 = α± iω

D = 0 two equal(repeated) real roots λ1 = λ2 = λ y(t) = C1e
λt + C2te

λt

Toward the case of repeated eigenvalues: matrix exponential (sec-
tion 7.7)

5. Recall that the Taylor expansion of the exponential function ex is

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . =

∞∑
i=0

xi

i!
(3)

which implies that

eλt = 1 + tλ+
t2

2!
λ2 +

t3

3!
λ3 + . . . =

∞∑
i=0

ti

i!
λi. (4)

In particular, in the previous notes, section 15, item 11 there, we used this formula to prove that

d

dt
eλt = λeλt (5)

for any complex λ.

6. Now replace the number x by an n × n matrix A in (3) (replacing also the number 1 in the very
first term by the n × n identity matrix I) to obtain another n × n matrix eA called the matrix
exponential of A:

eA = I +A+
1

2!
A2 +

1

3!
A3 + . . . =

∞∑
i=0

1

i!
Ai (6)

Then we can consider etA (a matrix-values function assigning to any t the matrix exponential of
the matrix tA),

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 + . . . =

∞∑
i=0

ti

i!
Ai. (7)

and exactly as for (8) one can obtain from this that
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d

dt
etA = AetA (8)

This implies that for any column vector v the vector function etAv is a solution of the system
X ′ = AX.

7. One says that n vectors v1, . . . , vn constitute a basis in Rn if any other vector v in Rn can be
uniquely represented as a linear combination of v1, . . . , vn, i.e. there exist constants c1, . . . , cn such
that

v = c1v
1 + . . . cnv

n.

Equivalently, v1, . . . , vn constitute a basis in Rn if and only if det(v1, . . . , vn) 6= 0.

Based on the previous item, if v1, . . . vn constitute a basis of Rn, then

{etAv1, etAv2, . . . , etAvn} (9)

form a fundamental set of solutions of A

The big question: How to calculate eAt or how to find a convenient basis v1, . . . , vn for
which eAtvi can be effectively calculated for every i = 1, . . . , n?

8. Note that in contrast to numbers for matrices eAeB 6= eBeA. However, if the matrices A and B
commute, AB = BA then eAeB = eBeA (just take the products of their Taylor expansion and use
commutativity). Moreover, if AB = BA , then eA+B = eAeB, which is not true in general.

9. If A = diag{λ1, . . . , λn}, the diagonal matrix with entries λ1, . . . , λn on the diagonal, then etA =
diag{etλ1 , . . . , etλn}
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In particular, if A = λI, A is the diagonal matrix with all entries on the diagonal being equal, then
etλI = eλtI

10. Note that the matrix λI commutes with any other matrix. Therefore using the previous two items
we can get the following formula that will be crucial in the sequal:

etA = eλtet(A−λI) (10)

11. Why the formula (10) is useful. Assume that λ is an eigenvalue and v is the corresponding eigen-
vector. Then calculate etAv using (10)

So, etAv = eλtv as expected by our previous considerations (see section 12, item 4.)

12. Conclusion: As a consequence of item 3 above (see the sentence including formula (9) , if an
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n × n matrix A admits a basis of eigenvectors v1, . . . vn in Rn , then (etλ1v1, . . . , etλnvn) form a
fundamental set of solutions of X ′ = AX.

Note that we could derive it without using matrix exponential and (9), but the matrix exponential
gives a way that works in more general situation.

13. The life is not so simple: not any n× n matrix admits a basis of eigenvectors in Rn.

EXAMPLE 1. Let N =

(
0 1
0 0

)
(a) Find all eigenvectors of N . Can you choose eigenvectors of N that constitute a basis of R2

(b) Calculate etN .


