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18: Repeated Eigenvalues: algebraic and geometric multiplicities of

eigenvalues, generalized eigenvectors, and solution for systems of dif-

ferential equation with repeated eigenvalues in case n = 2 (sec. 7.8)

1. We have seen that not every matrix admits a basis of eigenvectors. First, discuss a way how

to determine if there is such basis or not.

Recall the following two equivalent characterization of an eigenvalue:

(a) λ is an eigenvalue of A ⇔ det(A− λI) = 0;

(b) λ is an eigenvalue of A ⇔ there exist a nonzero vector v such that (A − λI)v = 0.

The set of all such vectors together with the 0 vector form a vector space called the

eigenspace of λ and denoted by Eλ.

Based on these two characterizations of an eigenvalue λ of a matrix A one can assign to λ

the following two positive integer numbers,

• Algebraic multiplicity of λ is the multiplicity of λ in the characteristic polynomial

det(A − xI), i.e. the maximal number of appearances of the factor (x − λ) in the

factorization of the polynomial det(A− xI).

• Geometric multiplicity of λ is the dimension dim Eλ of the eigenspace of λ, i.e. the

maximal number of linearly independent eigenvectors of λ.

2. For example, if N =

(
0 1

0 0

)
(as in the example in item 13 of the previous notes), then

λ = 0 is the unique eigenvalue. Find the algebraic multiplicity and geometric multiplicity

of λ = 0

THEOREM 1. Geometric multiplicity is not greater than algebraic multiplicity.
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THEOREM 2. A matrix A admits a basis of eigenvectors if and only of for every its

eigenvalue λ the geometric multiplicity of λ is equal to the algebraic multiplicity of λ.

REMARK 3. In Linear Algebra matrices admitting a basis of eigenvectors are called diag-

onizable (because they are diagonal in this basis).

REMARK 4. Basis of eigenvectors always exists for the following classes of matrix:

• symmetric matrices: AT = A, or equivalently, aij = aji for all i, j;

• skew-symmetric AT = −A, or equivalently, aij = −aji for all i, j.

For symmetric matrices all eigenvalues are real and the the eigenspaces corresponding to

the different eigenvalues are orthogonal. For skew-symmetric matrices the eigenvalues are

purely imaginary (i.e. of the form iβ).

3. If the matrix A does not admit a basis of eigenvectors then for what vectors w other than

the eigenvectors it is still easy to calculate eAtw in the light of the formula

etA = eλtet(A−λI) (1)

(see item 6 of the previous lecture notes)?

4. Assume that w is such that

(A− λI)w 6= 0, but (A− λI)2w = 0 (2)

(the first relation means that w is not an eigenvector corresponding to λ). Calculate eAtw

using (1).

5. More generally if we assume that for some k > 0

(A− λI)k−1w 6= 0, but (A− λI)kw = 0 (3)



c©Igor Zelenko, Fall 2017 3

then eAtw can be calculated using only finite number of terms when expanding et(A−λI)w

from (1).

Note that if for some λ there exists w satisfying (3) then λ must be an eigenvalue

6.

DEFINITION 5. A vector w satisfying (3) for some k > 0 is called a generalized eigen-

vector of λ (of order k).

The set of all generalized eigenvectors of λ together with the 0 vector is a vector space

denoted by Egen
λ

REMARK 6. The (regular) eigenvector is a generalized eigenvector of order 1, so Eλ ⊂ Egen
λ

(given two sets A and B, the notation A ⊂ B means that the set A is a subset of the set B,

i.e. any element of the set A belongs also to B)

THEOREM 7. The dimension of the space Egen
λ of generalized eigenvectors of λ is equal

to the algebraic multiplicity of λ.
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THEOREM 8. Any matrix A admits a basis of generalized eigenvectors.

Let us see how it all works in the first nontrivial case of n = 2.

7. Let A be 2 × 2 matrix and λ is a repeated eigenvalue of A. Then its algebraic multiplicity

is equal to

There are two options for the geometric multiplicity:

1 (trivial case) Geometric multiplicity of λ is equal to 2. Then A = λI

2. (less trivial case) Geometric multiplicity λ is equal to 1. In the rest of these notes we

concentrate on this case only.

8.

PROPOSITION 9. Let w be a nonzero vector which is not an eigenvector of λ, w /∈ Eλ.

The vector w satisfies (A−λI)2w = 0, i.e. w is a generalized eigenvector of order 2. Besides,

in this case

v := (A− λI)w (4)

is an eigenvector of A corresponding to λ.
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9. Note that {v, w} constructed above constitute a basis of R2 (i.e. Egen
λ = R2, so we proved

Theorem 8 in this case. Therefore, {etAv, etAw} form a fundamental set of solutions for the

system X ′ = AX. By constructions and calculation as in item 4 above

etAv =

etAw =

Conclusion:

{eλtv, eλt(w + tv)} . (5)

form a fundamental set of solutions of X ′ = AX, i.e. the general solution is

eλt(C1v + C2(w + tv)) . (6)

10. This gives us the following algorithms for fining the fundamental set of solutions in the case

of a repeated eigenvalue λ with geometric multiplicity 1.

Algorithm 1 (easier than the one in the book):

(a) Find the eigenspace Eλ of λ by finding all solutions of the system (A− λI)v = 0. The

dimension of this eigenspace under our assumptions must be equal to .

(b) Take any vector w not lying in the eigenline Eλ and find v := (A− λI)w. With chosen

v and w the general solution is given by (6).

Algorithm 2 (as in the book):

(a) Find an eigenvector v by finding one nonzero solution of the system (A− λI)v = 0.

(b) With v found in item 1 find w suh that (A − λI)w = v. With chosen v and w the

general solution is given by (6).

REMARK 10. The advantage of Algorithm 1 over Algorithm 2 is that in the first one you

solve only one linear system when finding the eigenline, while in Algorithm 2 you need to

solve one more linear system (A− λI)w = v for w (in Algorithm 1 you choose w and then

find v from (4) instead).

11. Finally let us give another algorithm which works only in the case n = 2 (for higher n it works

only under some additional assumption that A has only one eigenvalue). This algorithm

does not use eigenvetors explicitly (although implicitly we use here the information that an

eigenvalue λ is repeated). Proposition 9 actually implies that

(A− λI)2 = 0. (7)
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then based on (1) and (7)

etA =

Conclusion:

eAt = eλt(I + t(A− λI)) (8)

Algorithm 3: Calculate etA from (8). The columns of the resulting matrix form a funda-

mental set of solutions.

REMARK 11. Identity (7) is in fact a particular case of the followiing remarkable result

from Linear Algebra, called Caley-Hamilton: Let

det(A− λI) = (−1)n(λn + an−1λ
n−1 + . . .+ a1λ+ a0) (9)

then

An + an−1A
n−1 + . . .+ a1A+ a0I = 0 (10)

In other words, if one substitutes the matrix A instead of λ and a0I instead of a0 into the

right hand side of (10) then you will get 0.

12. Example. Find general solution of the system.:

{
x′1 = −3x1 + 5

2
x2

x′2 = −5
2
x1 + 2x2
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13. Now return to a second order linear homogeneous equation

ay′′ + by′ + cy = 0 (11)

with a repeated root of its characteristic polynomial. How to explain that {eλt, teλt} is

a fundamental set of solution from the theory of systems of first equations with repeated

eigenvalues?
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Consider the corresponding system{
x′1 = x2

x′2 = − c
a
x1 − b

a
x2.

(12)

The point here that one can take

v =

(
1

λ

)
, w =

(
0

1

)

so the first component of eλtv is equal to eλt and the first component of eλt(w+ tv) is equal

to teλt.


