18: Repeated Eigenvalues: algebraic and geometric multiplicities of eigenvalues, generalized eigenvectors, and solution for systems of differential equation with repeated eigenvalues in case n = 2 (sec. 7.8)

1. We have seen that not every matrix admits a basis of eigenvectors. First, discuss a way how to determine if there is such basis or not.

Recall the following two equivalent characterization of an eigenvalue:

- (a) λ is an eigenvalue of $A \Leftrightarrow \det(A \lambda I) = 0$;
- (b) λ is an eigenvalue of $A \Leftrightarrow$ there exist a nonzero vector v such that $(A \lambda I)v = 0$. The set of all such vectors together with the 0 vector form a vector space called the *eigenspace of* λ and denoted by E_{λ} .

Based on these two characterizations of an eigenvalue λ of a matrix A one can assign to λ the following two positive integer numbers,

- Algebraic multiplicity of λ is the multiplicity of λ in the characteristic polynomial $\det(A xI)$, i.e. the maximal number of appearances of the factor $(x \lambda)$ in the factorization of the polynomial $\det(A xI)$.
- Geometric multiplicity of λ is the dimension dim E_{λ} of the eigenspace of λ , i.e. the maximal number of linearly independent eigenvectors of λ .
- 2. For example, if $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (as in the example in item 13 of the previous notes), then $\lambda = 0$ is the unique eigenvalue. Find the algebraic multiplicity and geometric multiplicity of $\lambda = 0$

THEOREM 2. A matrix A admits a basis of eigenvectors if and only of for every its eigenvalue λ the geometric multiplicity of λ is equal to the algebraic multiplicity of λ .

REMARK 3. In Linear Algebra matrices admitting a basis of eigenvectors are called diagonizable (because they are diagonal in this basis).

REMARK 4. Basis of eigenvectors always exists for the following classes of matrix:

- symmetric matrices: $A^T = A$, or equivalently, $a_{ij} = a_{ji}$ for all i, j;
- skew-symmetric $A^T = -A$, or equivalently, $a_{ij} = -a_{ji}$ for all i, j.

For symmetric matrices all eigenvalues are real and the the eigenspaces corresponding to the different eigenvalues are orthogonal. For skew-symmetric matrices the eigenvalues are purely imaginary (i.e. of the form $i\beta$).

3. If the matrix A does not admit a basis of eigenvectors then for what vectors w other than the eigenvectors it is still easy to calculate $e^{At}w$ in the light of the formula

$$e^{tA} = e^{\lambda t} e^{t(A - \lambda I)} \tag{1}$$

(see item 6 of the previous lecture notes)?

4. Assume that w is such that

$$(A - \lambda I)w \neq 0$$
, but $(A - \lambda I)^2 w = 0$ (2)

(the first relation means that w is not an eigenvector corresponding to λ). Calculate $e^{At}w$ using (1).

5. More generally if we assume that for some k > 0

$$(A - \lambda I)^{k-1} w \neq 0, \text{ but } (A - \lambda I)^k w = 0$$
(3)

then $e^{At}w$ can be calculated using only finite number of terms when expanding $e^{t(A-\lambda I)}w$ from (1).

Note that if for some λ there exists w satisfying (3) then λ must be an eigenvalue

6.

DEFINITION 5. A vector w satisfying (3) for some k > 0 is called a generalized eigenvector of λ (of order k).

The set of all generalized eigenvectors of λ together with the 0 vector is a vector space denoted by $E_\lambda^{\rm gen}$

REMARK 6. The (regular) eigenvector is a generalized eigenvector of order 1, so $E_{\lambda} \subset E_{\lambda}^{\text{gen}}$ (given two sets A and B, the notation $A \subset B$ means that the set A is a subset of the set B, i.e. any element of the set A belongs also to B)

THEOREM 7. The dimension of the space E_{λ}^{gen} of generalized eigenvectors of λ is equal to the algebraic multiplicity of λ .

THEOREM 8. Any matrix A admits a basis of generalized eigenvectors.

Let us see how it all works in the first nontrivial case of n = 2.

7. Let A be 2 \times 2 matrix and λ is a repeated eigenvalue of A. Then its algebraic multiplicity is equal to _

There are two options for the geometric multiplicity:

1 (trivial case) Geometric multiplicity of λ is equal to 2. Then $A = \lambda I$

2. (less trivial case) Geometric multiplicity λ is equal to 1. In the rest of these notes we concentrate on this case only.

8.

PROPOSITION 9. Let w be a nonzero vector which is not an eigenvector of λ , $w \notin E_{\lambda}$. The vector w satisfies $(A - \lambda I)^2 w = 0$, i.e. w is a generalized eigenvector of order 2. Besides, in this case

$$v := (A - \lambda I)w \tag{4}$$

is an eigenvector of A corresponding to λ .

9. Note that $\{v, w\}$ constructed above constitute a basis of \mathbb{R}^2 (i.e. $E_{\lambda}^{\text{gen}} = \mathbb{R}^2$, so we proved Theorem 8 in this case. Therefore, $\{e^{tA}v, e^{tA}w\}$ form a fundamental set of solutions for the system X' = AX. By constructions and calculation as in item 4 above $e^{tA}v =$

$$e^{tA}w =$$

Conclusion:

$$\{e^{\lambda t}v, e^{\lambda t}(w+tv)\}.$$
(5)

form a fundamental set of solutions of X' = AX, i.e. the general solution is

$$e^{\lambda t}(C_1v + C_2(w + tv)).$$
(6)

10. This gives us the following algorithms for fining the fundamental set of solutions in the case of a repeated eigenvalue λ with geometric multiplicity 1.

Algorithm 1 (easier than the one in the book):

- (a) Find the eigenspace E_{λ} of λ by finding all solutions of the system $(A \lambda I)v = 0$. The dimension of this eigenspace under our assumptions must be equal to _.
- (b) Take any vector w not lying in the eigenline E_{λ} and find $v := (A \lambda I)w$. With chosen v and w the general solution is given by (6).

Algorithm 2 (as in the book):

- (a) Find an eigenvector v by finding one nonzero solution of the system $(A \lambda I)v = 0$.
- (b) With v found in item 1 find w sub that $(A \lambda I)w = v$. With chosen v and w the general solution is given by (6).

REMARK 10. The advantage of Algorithm 1 over Algorithm 2 is that in the first one you solve only one linear system when finding the eigenline, while in Algorithm 2 you need to solve one more linear system $(A - \lambda I)w = v$ for w (in Algorithm 1 you choose w and then find v from (4) instead).

11. Finally let us give another algorithm which works only in the case n = 2 (for higher n it works only under some additional assumption that A has only one eigenvalue). This algorithm does not use eigenvetors explicitly (although implicitly we use here the information that an eigenvalue λ is repeated). Proposition 9 actually implies that

$$(A - \lambda I)^2 = 0. \tag{7}$$

then based on (1) and (7) $e^{tA} =$

Conclusion:

$$e^{At} = e^{\lambda t} (I + t(A - \lambda I)) \tag{8}$$

Algorithm 3: Calculate e^{tA} from (8). The columns of the resulting matrix form a fundamental set of solutions.

REMARK 11. Identity (7) is in fact a particular case of the following remarkable result from Linear Algebra, called Caley-Hamilton: Let

$$\det(A - \lambda I) = (-1)^n (\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0)$$
(9)

then

$$A^{n} + a_{n-1}A^{n-1} + \ldots + a_{1}A + a_{0}I = 0$$
⁽¹⁰⁾

In other words, if one substitutes the matrix A instead of λ and a_0I instead of a_0 into the right hand side of (10) then you will get 0.

12. Example. Find general solution of the system.: $\begin{cases} x'_1 = -3x_1 + \frac{5}{2}x_2 \\ x'_2 = -\frac{5}{2}x_1 + 2x_2 \end{cases}$

13. Now return to a second order linear homogeneous equation

$$ay'' + by' + cy = 0 (11)$$

with a repeated root of its characteristic polynomial. How to explain that $\{e^{\lambda t}, te^{\lambda t}\}$ is a fundamental set of solution from the theory of systems of first equations with repeated eigenvalues? Consider the corresponding system

$$\begin{cases} x_1' = x_2 \\ x_2' = -\frac{c}{a} x_1 - \frac{b}{a} x_2. \end{cases}$$
(12)

The point here that one can take

$$v = \begin{pmatrix} 1 \\ \lambda \end{pmatrix}, \quad w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

so the first component of $e^{\lambda t}v$ is equal to $e^{\lambda t}$ and the first component of $e^{\lambda t}(w+tv)$ is equal to $te^{\lambda t}$.