19: Repeated Eigenvalues: description of general case with applications to $n=3$ with an eigenvalue of algebraic multiplicity 2 (sec. 7.8)

1. In the previous notes we defined the notions of the algebraic and geometric multiplicity of an eigenvalue (see item 1) and of generalized eigenvector of order k (Definition 5). We also saw (items 4 and 5) that it is relatively easy to calculate $e^{t A} w$ for a generalized eigenvector w of any order using the formula

$$
\begin{equation*}
e^{t A}=e^{\lambda t} e^{t(A-\lambda I)} \tag{1}
\end{equation*}
$$

and we stated that any matrix admits a basis of generalized eigenvectors (Theorem 8).
Now I will give more properties of (spaces of) generalized eigenvectors so that you will have more clear idea how to find a basis of them in an effective way and I will demonstrate this in all possible cases when $n=3$.
2. Let λ be an eigenvalue of matrix A. For any positive integer k let $E_{\lambda}^{(k)}$ be the space of all vectors w in \mathbb{R}^{n} such that

$$
(A-\lambda I)^{k} w=0 .
$$

Some comments:

- In set-theoretical notations $E_{\lambda}^{(k)}$ can be defined without words, just by the formula:

$$
E_{\lambda}^{(k)}:=\left\{w:(A-\lambda I)^{k} w=0\right\}
$$

- By Definition 5 of previous section $18, E_{\lambda}^{(k)}$ is the space consisting of all generalized eigenvectors of order not greater than k (and the zero vector);
- the space $E_{\lambda}^{(1)}$ is nothing but the eigenspace E_{λ} of λ.

3. Some main properties of $E_{\lambda}^{(k)}$
(a) $E_{\lambda}^{(k)} \subset E_{\lambda}^{(k+1)}$, so we have the following nested sequence of subspace (called also a filtration of \mathbb{R}^{n}):
(b) If $E_{\lambda}^{(k)}=E_{\lambda}^{(k+1)}$ then $E_{\lambda}^{(k)}=E_{\lambda}^{(n)}$ for all $n>k$, i.e. the nested sequence of subspaces stabilizes on the k th step and in this case $\operatorname{dim} E_{\lambda}^{(k)}=$ the algebraic multiplicity of λ (so in this case $E_{\lambda}^{(k)}$ is the space $E_{\lambda}^{\text {gen }}$ consisting of all generalized eigenvectors (and zero vector) in the notation of the previous notes.
(c) $(A-\lambda I) E_{\lambda}^{(k)} \subset E_{\lambda}^{(k-1)}$. Moreover, if w is a generalized eigenvector of order k then $(A-\lambda I) w$ is a generalized eigenvector of order $k-1$.

Let us demosntrate how it works in the case of $n=3$. In this notes we demonstrate it in the case when there is an eigenvalue λ_{1} of algebraic multiplicity 2 and in Enrichment 7 we will discuss the case of an eigenvalue of algebraic multiplicity 3 .

$n=3$: the case of one eigenvalue λ_{1} of algebraic multiplicity 2

4. Then another eigenvalue λ_{2} has algebraic multiplicity equal to __ and so its geometric multiplicity is equal to \qquad .
5. λ_{1}, having algebraic multiplicity 2 , may have either geometric multiplicity \qquad or \qquad
6. If λ_{1} has geometric multiplicity 2 then by Theorem 2 of the previous notes the matrix A has a basis of eigenvectors. So, you proceed as follows:

- Find 2 linearly independent eigenvectors v^{1} and v^{2} of the eigenvlue λ_{1} (we will demonstrate the technique how to do it in Example 1 below, see also Remark 1 below);
- Find an eigenvector z of λ_{2};
- The general solution of $X^{\prime}=A X$ is

$$
X(t)=C_{1} e^{\lambda_{1} t} v^{1}+C_{2} e^{\lambda_{1} t} v^{2}+C_{3} e^{\lambda_{2} t} z
$$

similarly to the case of distinct eigenvalues.
7. If λ_{1} has geometric multiplicity 1 , then

- $\operatorname{dim} E_{\lambda_{1}}^{(1)}=\operatorname{dim} E_{\lambda_{1}}=$ \qquad .
- Then by stabilization property (b) of item 3 above the space $E_{\lambda_{1}}^{(2)}$ is strictly larger than the eigenspace $E_{\lambda_{1}}$, so $\operatorname{dim} E_{\lambda_{1}}^{(2)}>1$. Also since the algebraic multiplicity of λ_{1} is 2 , by Theorem 7 of the previous notes $\operatorname{dim} E_{\lambda_{1}}^{(2)} \leq 2$. So, taking into account both inequalities for $\operatorname{dim} E_{\lambda_{1}}^{(2)}$ we get that $\operatorname{dim} E_{\lambda}^{(2)}=2$.

Based on this we can proceed in one of the following ways

8. Analog of the algorithm 1 of the previous notes

(a) Find the eigenspace $E_{\lambda_{1}}$ by solving the system $\left(A-\lambda_{1} I\right) v=0$. If it is one-dimensional then we are in the situation discussed here (if it is two dimensional then go to the item 6 above);
(b) Find the space $E_{\lambda_{1}}^{(2)}$ by solving the system $\left(A-\lambda_{1} I\right)^{2} w=0$ (it might be quite tedious to calculate the matrix $\left(A-\lambda_{1} I\right)^{2}$ but the good news is that you know a priori that all rows of this matrix must be multiple of one row);
(c) Choose any vector w in the plane $E_{\lambda_{1}}^{(2)}$, which does not lie on the eigenline $E_{\lambda_{1}}$ and set $v:=\left(A-\lambda_{1} I\right) w$. Then, by property (c) of item 3 above, the vector v is an eigenvector with the eigenvalue λ_{1};
(d) Find an eigenvector z of the second eigenvalue λ_{2};
(e) Then $\{v, w, z\}$ is a basis of \mathbb{R}^{3} consisting of 2 eigenvectors (v and z) and one generalized eigenvector w. So, similarly to item 9 of the previous notes:

$$
\begin{equation*}
\left(e^{t A} v, e^{t A} w, e^{t A} z\right)=\left\{e^{\lambda_{1} t} v, e^{\lambda_{1} t}(w+t v), e^{\lambda_{2} t} z\right\} \tag{2}
\end{equation*}
$$

is the fundamental set of solutions of $X^{\prime}=A X$.

9. Analog of the algorithm 2 of the previous notes (as in the textbook)

(a) Solve the system $\left(A-\lambda_{1} I\right) v=0$. If the space of solutions is one-dimensional, then we are in the situation discussed here (if it is two dimensional then go to the item 6 above). Choose one of the solutions v of the system $\left(A-\lambda_{1} I\right) v=0$.
(b) Find a vector w such that $\left(A-\lambda_{1} I\right) w=v$, where v is the vector chosen in the previous step (the advantage here over the previous algorithm is that you do not need to calculate the matrix $\left.\left(A-\lambda_{1} I\right)^{2}\right)$.
(c) With the vectors v and w found in the previous items proceed as in the items (d) and (e) of the previous algorithm.

REMARK 1. Useful technical remark: the very first thing here is to determine the geometric multiplicity of λ_{1}. Depending on this you will proceed either as in item 6 or either items 8-9. Some people like the following rule for determining geometric multiplicity: bring the matrix $A-\lambda_{1} I$ to the row echelon form using the Gauss elimination, then the geometric multiplicity is equal to number of zero rows in this row echelon form.
10. Example 1. Consider the following system

$$
\begin{aligned}
x_{1}^{\prime} & =3 x_{1}+2 x_{2}+4 x_{3} \\
x_{2}^{\prime} & =2 x_{1}+2 x_{3} \\
x_{3}^{\prime} & =4 x_{1}+2 x_{2}+3 x_{3}
\end{aligned}
$$

It is know that the characteristic polynomial of the matrix A of the system is equal to $-(\lambda+1)^{2}(\lambda-8)$.
(a) Find algebraic and geometric multiplicities of all eigenvalues of A
(b) Find the general solution of the system.
11. Example 2. Consider the following system

$$
\begin{aligned}
x_{1}^{\prime} & =-3 x_{1}+3 x_{2}+8 x_{3} \\
x_{2}^{\prime} & =11 x_{1}-4 x_{2}-17 x_{3} \\
x_{3}^{\prime} & =-5 x_{1}+3 x_{2}+10 x_{3}
\end{aligned}
$$

It is know that the characteristic polynomial of the matrix A of the system is equal to $-(\lambda-2)^{2}(\lambda+1)$.
(a) Find algebraic and geometric multiplicities of all eigenvalues of A
(b) Find the general solution of the system.

