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21: Nonhomogeneous Equations. Method of Undetermined

Coefficients(judicious guess) (section 3.5) with applications

to the forced vibrations (section 3.8)

Method of Undetermined Coefficients

1. Consider a particular class of nonhomogeneous linear ODE with constant coefficients

ay′′ + by′ + cy = g(t),

where a, b, c are real constants and g(t) involves linear combinations, sums and products of

tm, eαt, sin(βt), cos(βt).

The case when g(t) = eαtPn(t), where Pn(t) is a polynomial of degree

n

2. Consider the equation

ay′′ + by′ + cy = eαtPn(t) (1)

3. Since derivatives of any order of the product of eαt and a polynomial is again the product of

eαt and a polynomial, it is natural to look for a particular solution of (1) eαt and an unknown

(undetermined) polynomial Q(t). Plugging such function into equation (1) and comparing

the right-hand side with the left-hand side we we will get n + 1 linear equations for the

coefficients of polynomial Q (the undetermined coefficients) (n+ 1 is because a polynomial

Pn has n+ 1 coefficients). So you may expect that if the undetermined polynomial Q(t) will

depend on n+ 1 undetermined coefficients we will be able to find a solution of this system.

4. However, the life is not so easy and the form of undetermined polynomial will depend on

whether α is a root of the characteristic polynomial of the homogeneous equation correspond-

ing to (1), and if it is a root it will depend on the multiplicity of α in this characteristic

polynomial. In more detail

(a) If α is NOT a root of characteristic polynomial, then we look for a solution in

the form

yp(t) = eαt(A0 + A1t+ A2t
2 + . . .+ Ant

n) (2)

so we have n+1 undetermined coefficients A0, . . . , An that we can determine by plugging

yp(t) into (1) and comparing coefficients of the left and right-hand sides.

(b) (heuristic explanation) If α is a root of multiplicity 1 1 , then eαt is a solution of

1everywhere here multiplicity means the algebraic multiplicity
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the corresponding homogeneous equation, so if we plug yp(t) of the form (2) into (1)

A0 will actually not appear there.

So, the number of “essential” undetermined coefficients will be n, which will be not

enough for obtaining the right-hand side of (1) (actually one can show that the left-

hand side and right-hand sides are never equal after plugging yp(t) of the form (2)

in this case (because the coefficient of eαtn of the left-hand side will be 0, while the

analogous coefficient of the right-hand side is not).

However, everything will work if we look for the solution in the form

yp(t) = teαt(A0 + A1t+ A2t
2 + . . .+ Ant

n) (3)

so we have n+1 undetermined coefficients A0, . . . , An that we can determine by plugging

yp(t) into (1) and comparing coefficients of the left and right-hand sides.

(c) Similarly, if α is a root of multiplicity 2, then we look for the solution in the form

yp(t) = t2eαt(A0 + A1t+ A2t
2 + . . .+ Ant

n) (4)

5. All three case can be unified if we will say that for α not being a root of the characteristic

polynomial its multiplicity in this polynomial is 0. In other words, the multiplicity of α in

the characteristic polynomial (depending on the variable λ ) is the maximal nonnegative

integer s such that the characteristic polynomial is divisible by (λ− α)s.

Then formulas (2)-(3) can be written as one formula:

yp(t) = tseαt(A0 + A1t+ A2t
2 + . . .+ Ant

n), (5)

where s is the multiplicity of α in the characteristic polynomial

6. In each of the following equations use the method of undetermined coefficient for finding the

general solution of it:

(a) y′′ − 3y′ + 2y = 4e3t

(b) y′′ − 3y′ + 2y = 4et

(c) y′′ + 10y′ + 25y = 3e−5t

The case when g(t) = eαtPn(t) cosωt or g(t) = eαtPn(t) sinωt, where

Pn(t) is a polynomial of degree n

7. Consider the equation

ay′′ + by′ + cy = eαtPn(t) cosωt or ay′′ + by′ + cy = eαtPn(t) sinωt (6)
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In this case the derivatives of a function of the form eαtQ(t) cosωt , where Q(t) is a poly-

nomial, is a sum of functions of the form eαtQ1(t) cosωt and eαtQ2(t) cosωt, where Q1(t)

and Q2(t) are polynomials . Therefore, we expect to look for the solutions in the form of

sum of such functions. Again the issue of multiplicity is crucial but now we are interested

in multiplicity of the complex number

λ = α + iω

in the characteristic polynomial. The reason for this is that in fact the considered case is

similar to g(t) = e(α+iω)tPn(t), and the latter can be treated similarly to the real case.

For second order equation there are two options for the multiplicity s of α + iω in the

characteristic polynomial: s = or s = .

Then we look for a particular solution of (6) in the form

yp(t) = tseαt(A0t
n+A1t

n−1 + . . .+An) cos(ωt)+ tseαt(B0t
n+B1t

n−1 + . . .+Bn) sin(ωt), (7)

8. Find general solution of

y′′ + 2y′ + 5y = 3 sin 2t

9. Based on the method of undetermined coefficients determine the form in you will look for

yp (do not find the values of the undetermined coefficients):

ay′′ + by′ + cy = g(t) λ1, λ2 α + iω s yp(t)

1 y′′ = et

2 y′′ − 4y′ + 4 = e2t

3 y′′ + 2y′ + 10y = 6 cos(3t) λ1,2 = −1± 3i

4 y′′ + 2y′ + 10y = 6e−t sin(3t) λ1,2 = −1± 3i

5 y′′ + 2y′ + 10y = (t3 − 1) sin(3t) λ1,2 = −1± 3i

6 y′′ + 2y′ + 10y = t2e−t cos(3t) λ1,2 = −1± 3i

7 y′′ = 2t− 2013 λ1 = λ2 = 0

10.

REMARK 1. Given an equation

ay′′ + by′ + cy = g1(t) + g2(t) (8)

where g1(t) are g2(t) are of the form of the right-hand sides of (1) or/and (6) to find a

particular solution we separately find particular solutions of

y′′ + by′ + cy = g1(t) and y′′ + by′ + cy = g2(t)

and then add them.
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EXAMPLE 2. Based on the method of undetermined coefficients determine the form in

you will look for yp (do not find the values of the undetermined coefficients):

y′′ − 4y′ + 4 = e2t + e−2t.

11.

REMARK 3. (Enrichment for bonus question 4 of homework 8) The analog of the

method of undetermined coefficients can be applied also to systems of n nonhomogeneous

equations of the form:

X′(t) = AX(t) + G(t), (9)

where for simplicity G(t) = eαtZn(t) with α, and Zm(t) is a vector function with each com-

ponent being a polynomial of degree not greater than m and such that at least one component

is a polynomial of degree equal to m (the case involving factors cosωt and sinωt can be

treated similarly) . We discuss only three particular cases:

(a) α is not an eigenvalue of A. Then the particular solution in the former case can be

found in the form

Xp(t) = eαtVm(t)

where Vm(t) is a vector function with each component being a polynomial of degree

not greater than m and such that at least one component is a polynomial of degree

equal to m (so the coefficients of all these components are undetermined coefficients.

In particular if m = 0, i.e. Zm(t) ≡ Z0, then we look for a solution in the form

Xp(t) = eαtV0

for an undetermined vector V0.

(b) α is equal to an eigenvalue of algebraic multiplicity 1 with an eigenvector v. Then the

particular solution can be found in the form

Xp(t) = Atm+1eαtv + eαtVm(t)

where A is a(undetermined) constant and Vm(t) is a vector function with each compo-

nent being a polynomial of degree not greater than m and such that at least one com-

ponent is a polynomial of degree equal to m. In particular if m = 0, i.e. Zm(t) ≡ Z0,

then we look for a solution in the form

Xp(t) = Ateαtv + eαtV0

for an undetermined constant A and a vector V0.

(c) Try to generalized it to the case when α equal to a repeated root for n = 2.
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Forced Vibrations (section 3.8)

12. Suppose now we take into consideration an external force F (t) acting on a vibrating

spring/mass system. The inclusion of F (t) in the formulation of Newton’s second law yields

mu′′ = mg − k(L+ u)− γu′ + F (t),

or taking into account that mg = kL we get the so called ODE of forced motion

mu′′ + γu′ + ku = F (t). (10)

For this ODE we have the same initial conditions as for unforced vibration. Namely,

u(0) = u0, u′(0) = v0,

where u0 is the initial displacement and v0 is the initial velocity.

Case of Periodic External Force

13. When F (t) is a periodic function such as

F (t) = F0 sin(ωt) or F (t) = F0 cos(ωt)

then by the Method of Undetermined coefficients a particular solution of forced motion can

be obtained as

up(t) = ts(A cos(ωt) +B sin(ωt)) = tsR cos(ωt− δ)

Remind that R =
√
A2 +B2 is amplitude and δ is phase (cos δ = A/R, sin δ = B/R)

14. Characteristic equation mλ2 + γλ+ k = 0. We consider the case

D = γ2 − 4mk < 0,

i.e.

γ < 2
√
km =: γcrit

because otherwise there are no unforced oscillations as it follows from the section 3.7.

15. Recall that the roots of the characteristic equation when D < 0 are

λ1,2 =
−γ ±

√
γ2 − 4mk

2m
=
−γ ± i

√
4mk − γ2

2m
=

− γ

2m
± i
√
k

m
− γ2

4m2
= α± i

√
ω2
0 − α2 = α± iµ,

where ω2
0 = k

m
.
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16. Solution of the corresponding homogeneous equation is

uh(t) = eαt(C1 cos(µt) + C2 sin(µt)) = R1e
αt cos(µt− δ),

where R1 =
√
C2

1 + C2
2 and cos δ = C1/R1, sin δ = C2/R1.

17. The general solution of (10) is u(t) = up(t) + uh(t), or

u(t) = tsR cos(ωt− δ) +R1e
λt cos(µt− δ). (11)

Forced Damped Vibration

Steady-State and Transient solutions

18. Motion with damping means γ 6= 0. It implies the following

• γ is a positive constant and then α = − γ
2m

< 0.

• λ1,2 6= ω, hence, s = 0.

• The general solution of (10) in this case will be

u(t) = R cos(ωt− δ)︸ ︷︷ ︸
steady-state solution

+R1e
λt cos(µt− δ)︸ ︷︷ ︸

transient solution,uc(t)

. (12)

Emphasize, that transient solution uc(t) dies of as time increases (because α < 0), i.e.

lim
t→∞

uc(t) = 0.

Thus, for large values of t, the displacements of mass are closely approximated by up(t):

u(t) ≈ R cos(ωt− δ).

Forced Undamped Vibration

19. Motion without damping means γ = 0 and then we have the following IVP:

mu′′ + ku = F (t), u(0) = u0, u′(0) = v0,

or

u′′ + ω2
0u =

F (t)

m
, u(0) = u0, u′(0) = v0.

20. Consider the particular case of a periodic external force:

u′′ + ω2
0u = F0 cos(ωt).
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21. In this case α = − γ
2m

= 0, µ =
√
ω2
0 − λ2 = ω0. Thus, general solution is

u(t) = Rts cos(ωt− δ) +R1 cos(ω0t− δ).

• Case 1: ω = ω0, i.e. s = 1.

22. This is the case when the frequency of the external force coincides with the natural frequency

of the system.

23. General solution in this case

u(t) = Rt cos(ωt− δ) +R1 cos(ω0t− δ)

It follows that u(t) is unbounded as time increases (This phenomenon is known as pure

resonance.)

• Case 2: ω 6= ω0, i.e. s = 0.

24. This is the case when the frequency of the external force does not coincide with the natural

frequency of the system.

25. Consider the following particular case (when mass is initially at rest):

u′′ + ω2
0u = F0 cos(ωt), u(0) = 0, u′(0) = 0.

26. One can show (see your homework) that the general solution of this ODE is

u(t) =
F0

m(ω2
0 − ω2)

(cos(ωt)− cos(ω0t)) .

Using trigonometric identity

cosα− cos β = −2 sin
α− β

2
sin

α + β

2

we rewrite the general solution as

u(t) =

[
− 2F0

m(ω2
0 − ω2)

sin

(
ω − ω0

2
t

)]
︸ ︷︷ ︸

slowly varying sinusoidal amplitude

sin

(
ω + ω0

2
t

)

If |ω − ω0| is small, then ω + ω0 is much greater than |ω − ω0|. Consequently, sin
(
ω+ω0

2
t
)

is rapidly oscillation function comparing to sin
(
ω−ω0

2
t
)

with a slowly varying sinusoidal

amplitude 2F0

m|ω2
0−ω2| sin

(
ω−ω0

2
t
)
.
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27. Type of motion processing a periodic variation of amplitude is called an amplitude modulation

effect (AM).


