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Abstract We demonstrate how the novel approach to the local geometry of struc-
tures of nonholonomic nature, originated by Andrei Agrachev, works for rank 2
distributions of maximal class in Rn with additional structures such as affine con-
trol systems with one input spanning these distributions, sub-(pseudo)Riemannian
structures etc. In contrast to the case of an arbitrary rank 2 distribution without addi-
tional structures, in the considered cases each abnormal extremal (of the underlying
rank 2 distribution) possesses a distinguished parametrization. This fact allows one
to construct the canonical frame on a (2n−3)-dimensional for arbitrary n≥ 5 . The
moduli spaces of the most symmetric models are described as well.
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1 Introduction

About seventeen years ago Andrei Agrachev proposed the idea to study the local
geometry of control systems and geometric structures on manifolds by studying the
flow of extremals of optimal control problems naturally associated with these ob-
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jects [1, 2, 3]. Originally he considered situations when one can assign a curve of
Lagrangian subspaces of a linear symplectic space or, in other words, a curve in a
Lagrangian Grassmannian to an extremal of these optimal control problems. This
curve was called the Jacobi curve of this extremal, because it contains all informa-
tion about the solutions of the Jacobi equations along it. Agrachev’s constructions of
Jacobi curves worked in particular for normal extremals of sub-Riemannian struc-
tures and abnormal extremals of rank 2 distributions. Similar idea can be used for
abnormal extremals of distribution of any rank, resulting in more general curves of
coisotropic subspaces in a linear symplectic space [11, 15].

The key point is that the differential geometry of the original structure can be
studied via differential geometry of such curves with respect to the action of the
linear symplectic group. The latter problem is simpler in many respects than the
original one. In particular, any symplectic invariants of the Jacobi curves produces
the invariant of the original structure.

This idea proved to be very prolific. For the geometry of distributions, first it led
to a new geometric-control interpretation of the classical Cartan invariant of rank 2
distributions on a five dimensional manifold, relating it to the classical Wilczynski
invariants of curves in projective spaces [24, 23, 4]. It also gave a new effective
method of the calculation of the Cartan tensor and the generalization of the latter
invariant to rank 2 distributions on manifolds of arbitrary dimensions. These new
invariants are obtained from the Wilczynski invariants of curves in projective spaces,
induced from the Jacobi curves by a series of osculations together with the operation
of taking skew symmetric complements. They are called the generalized Wilczynski
invariants of rank 2 distributions (see section 5 for details).

Later on, we used this approach for the construction of the canonical frames for
rank 2 distributions on manifolds of arbitrary dimension [9, 10], and, in combination
with algebraic prolongation techniques in a spirit of N. Tanaka, for the construction
of the canonical frames for distributions of rank 3 [11] and recently of arbitrary
rank [15, 16] under very mild genericity assumptions called maximality of class.
Remarkably, these constructions are independent of the nilpotent approximation (the
Tanaka symbol) of a distribution at a point and even independent of its small growth
vector. This extends significantly the scope of distributions for which the canonical
frames can be constructed explicitly and in an unified way compared to the Tanaka
approach ([20, 18, 6, 26]).

Perhaps the case of rank 2 distributions of so-called maximal class in Rn with
n > 5 provides the most illustrative example of the effectiveness of this approach,
because the construction of the canonical frame in this case needs nothing more than
some simple facts from the classical theory of curves in projective spaces such as
the existence of the canonical projective structure on such curves, i.e. a special set of
parametrizations defined up to a Möbius transformation (see section 5 below). The
canonical frame for such distributions is constructed in a unified way on a bundle
of dimension 2n−1 and this dimension cannot be reduced, because there exists the
unique, up to a local equivalence, rank 2 distribution of maximal class in Rn with
the pseudo-group of local symmetries of dimension equal to 2n− 1. For this most
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symmetric rank 2 distribution of maximal class all generalized Wilczynski invariants
are identically zero.

However, under some additional assumptions, the canonical parametrization, up
to a shift, on abnormal extremals can be distinguished instead of the canonical pro-
jective structure and one would expect that the canonical frame can be constructed
on a bundle of smaller dimension.

What are these additional assumptions? One possibility is to consider rank 2
distributions of maximal class such that at least one of its generalized Wilczynski
invariant does not vanish. Due to the size limits for the paper we postpone the treat-
ment of this case to another paper (see also preprint [13]).

Another possibility is to consider a rank 2 distribution D with the additional
structures defining a control system with one input satisfying certain regularity as-
sumptions. A control system with one input on a distribution D in the manifold M
is given by choosing a one-dimensional submanifold Vq on each fiber D(q) of the
distribution D for any point q ∈M (smoothly depending on q). The set Vq ⊂ D(q)
is called the set of admissible velocities of the control system at q.

Let us introduce several natural notions of equivalence of control systems. We
say that two control systems given by one-dimensional submanifolds Vq and Ṽq on
each fiber D(q) are (state-feedback) equivalent if there exists a diffeomorphism F
of M such that

F∗(Vq) = ṼF(q) (1.1)

for any q ∈M. These control systems are called locally equivalent at the points q0
and q̃0 of M, respectively, if there exists neighborhoods U and Ũ of q0 and q̃0 in
M, respectively, and a diffeomorphism F : : U → Ũ such that (1.1) holds for any
q ∈U . Finally, these control systems are called micro-locally equivalent at (q0,v0)
and (q̃0, ṽ0), where the points q0 and q̃0 belong to M, v ∈ Vq, and ṽ ∈ Vq, if there
exist neighborhoods U and Ũ of (q0,v0) and (q̃0, ṽ0) in the set V = {(q,v) : q ∈
M,v ∈ Vq} and a diffeomorphism F : : pr(U)→ pr(Ũ), where pr : V→ M is the
canonical projection, such that F∗v∈VF(q)∩Ũ for any (q,v)∈U. From these notions
of equivalence one can define the group of symmetries and pseudo-groups of local
and micro-local symmetries of a control system accordingly. In the paper we mainly
work with the micro-local equivalence but if one restricts himself to affine control
systems only, then in all formulations the micro-local equivalence can be replaces
by the local one.

Definition 1. Consider a control system with one input on a distribution D with
the set of admissible velocities Vq at a point q. A line in D(q) (through the origin)
intersecting the set Vq\{the origin of D(q)} in a finite number of points is called a
regular line of the control system at the point q.

Definition 2. We say that a control system with one input on a rank 2 distribution
D is regular if for any point q the sets of regular lines is a nonempty open subset of
the projectivization PD(q) .

An important particular class of examples of such control systems is when Vq is
an affine line. In this case we get an affine control system with one input and with
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a non-zero drift. Another examples are sub-(pseudo)Riemannian structures, when
the curves are ±1-level sets of non-degenerate quadrics. For affine control systems
with a non-zero drift and sub-Riemannian structures all lines in D(q) are regular,
while for sub-pseudo-Riemannian case all lines except the asymptotic lines of the
quadrics are regular.

The goal of this paper is to demonstrate the approach, originated by Andrei
Agrachev, in this simplified but still important situation of regular control system
with one input on rank 2 distributions of maximal class. We show that in this sit-
uations the canonical frame can be constructed in a unified way on a bundle of
dimension 2n−3 for all n≥ 5 (Theorem 3, section 7 ). We also describe all models
with the pseudo-group of micro-local symmetries of dimension 2n−3. i.e. the most
symmetric ones, among the considered class of objects (Theorem 1 below and its
reformulation in Theorem , section 9).

The most symmetric models depend on continuous parameters. Let us describe
these models. Given a tuple of n− 3 constants (r1, . . . ,rn−3) let A(r1,...,rn−3) be the
following affine control system in Rn taken with coordinates (x,y0, . . . ,yn−3,z):

q̇ = X1
(
q
)
+uX2(q), (1.2)

where

X1 =
∂

∂x
+ y1

∂

∂y0
+ · · ·+ yn−3

∂

∂yn−4
+

(
y2

n−3 + r1y2
n−4 + r2y2

n−5 + . . .rn−3y2
0
) ∂

∂ z
, (1.3)

X2 =
∂

∂yn−3
. (1.4)

and denote by D(r1,...,rn−3) the corresponding rank 2 distribution generated by the
vector fields X1 and X2 as in (1.3)-(1.4). Note that, as shown in [9, 10], the most
symmetric rank 2 distribution in Rn of maximal class with n≥ 5 is locally equivalent
to D(0,...,0). In the case of regular control systems we prove the following

Theorem 1. A regular control systems with one input on a rank 2 distribution of
maximal class in Rn with n ≥ 5 has the pseudo-group of micro-local symmetries
of dimension not greater than 2n− 3. If this dimension is equal to 2n− 3, then
the control system is micro-locally equivalent to the system A(r1,...,rn−3) for some
constants ri ∈R, 1≤ i≤ n−3. The affine control systems A(r1,...,rn−3) corresponding
to the different tuples (r1, . . . ,rn−3) are not equivalent.

Rephrasing the last sentence of the Theorem 1, the map (r1, . . . ,rn−3) 7→A(r1,...,rn−3)

identifies the space An of the most symmetric, up to a micro-local equivalence, reg-
ular control systems on rank 2 distributions of maximal class in Rn with Rn−3.

Remark 1. (see [13] for more detail) Note that the underlying distributions D(r1,...,rn−3)

might be equivalent for different tuples (r1, . . . ,rn−3). Among all distributions of the
type D(r1,...,rn−3) there is a one-parametric family of distributions which are locally
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equivalent to D(0,...,0). To describe this family we say that a tuple of m numbers
(r1, . . . ,rm) is called exceptional if the roots of the polynomial

λ
2m +

m

∑
i=1

(−1)iriλ
2(m−i) (1.5)

constitute an arithmetic progression (with the zero sum in this case). Equivalently,

(r1, . . . ,rm) is exceptional if ri = αm,i

(
r1

αm,1

)i
, 1≤ i ≤ m, where the constants αm,i,

1≤ i≤ m, satisfy the following identity

x2m +
m

∑
i=1

(−1)i
αm,ix2(m−i) =

m

∏
i=1

(
x2− (2i−1)2). (1.6)

The distribution D(r1,...,rn−3) is locally equivalent to the distribution D(0,...,0) (or,
equivalently, has the algebra of infinitesimal symmetries of the maximal possible
dimension among all rank 2 distributions of maximal class in Rn) if and only if the
tuple (r1, . . . ,rn−3) is exceptional. The distribution D(r̃1,...,r̃n−3) is locally equivalent
to the distribution D(r1,...,rn−3), where the tuple (r1, . . . ,rn−3) is not exceptional, if
and only if

there exists c 6= 0 such that r̃i = c2iri, 1≤ i≤ n−3. �

Finally note that affine control systems with one input were considered also in
[5], but the genericity assumptions imposed there are much stronger than our gener-
icity assumptions here.

The paper is organized as follows. The main results are given in sections 7 and
9 (Theorem 3 and Theorem 4, which are reformulations of Theorem 1 above). Sec-
tions 2-6 are preparatory for section 7, section 8 is preparatory for section 9. In
sections 2-5 we list all necessary facts about abnormal extremals of rank 2 dis-
tributions, their Jacobi curves and describe the canpnical projective structure on a
unparametrized curve in projective spaces. The details can be found in [9, 23, 22].
In section 6 we summarize the main results of [9, 10] about canonical frames for
rank 2 distributions of maximal class in order to compare them with the analogous
results of sections 7 and 9. In section 8 we list all necessary facts about the invariants
of parametrized self-dual curves in projective spaces.

2 Abnormal extremals of rank 2 distributions

Let D be a rank 2 distribution on a manifold M. A smooth section of a vector bundle
D is called a horizontal vector field of D. Taking iterative brackets of horizontal vec-
tor fields of D, we obtain the natural filtration {dimD j(q)} j∈N on each tangent space
TqM. Here D j is the j-th power of the distribution D, i.e., D j = D j−1 + [D,D j−1],
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D1 = D, or , equivalently, D j(q) is a linear span of all Lie brackets of the length not
greater than j of horizontal vector fields of D evaluated at q.

Assume that dimD2(q)= 3 and dimD3(q)> 3 for any q∈M. Denote by (D j)⊥⊂
T ∗M the annihilator of the jth power D j, namely

(D j)⊥ = {(p,q) ∈ T ∗M : p · v = 0 ∀v ∈ D j(q)}.

Recall that abnormal extremals of D are by definition the Pontryagin extremals
with the vanishing Lagrange multiplier near the functional for any extremal problem
with constrains, given by the distribution D. They depend only on the distribution D
and not on a functional.

It is easy to show (see, for example, [22, 10]) that for rank 2 distributions all ab-
normal extremals lie in (D2)⊥ and that through any point of the codimension 3 sub-
manifold (D2)⊥\(D3)⊥ of T ∗M passes exactly one abnormal extremal or, in other
words, (D2)⊥\(D3)⊥ is foliated by the characteristic 1-foliation of abnormal ex-
tremals. To describe this foliation let π : T ∗M 7→M be the canonical projection. For
any λ ∈ T ∗M, λ = (p,q), q∈M, p∈ T ∗q M, let s(λ )(·) = p(π∗·) be the canonical Li-
ouville form and σ = ds be the standard symplectic structure on T ∗M. Since the sub-
manifold (D2)⊥ has odd codimension in T ∗M, the kernels of the restriction σ |(D2)⊥

of σ on (D2)⊥ are not trivial. At the the points of (D2)⊥\(D3)⊥ these kernels are
one-dimensional. They form the characteristic line distribution in (D2)⊥\(D3)⊥,
which will be denoted by C . The line distribution C defines the desired charac-
teristic 1-foliation on (D2)⊥\(D3)⊥ and the leaf of this foliation through a point is
exactly the abnormal extremal passing through this point. From now on we shall
work with abnormal extremals which are integral curves of the characteristic distri-
bution C .

The characteristic line distribution C can be easily described in terms of a local
basis of the distribution D, i.e. two horizontal vector fields X1 and X2 such that
D(q) = span{X1(q),X2(q)} for all q from some open set of M. Denote by

X3 = [X1,X2], X4 =
[
X1, [X1,X2]

]
, X5 =

[
X2, [X1,X2]

]
. (2.1)

Let us introduce the “quasi-impulses” ui : T ∗M 7→ R, 1≤ i≤ 5,

ui(λ ) = p ·Xi(q), λ = (p,q), q ∈M, p ∈ T ∗q M. (2.2)

Then by the definition

(D2)⊥ = {λ ∈ T ∗M : u1(λ ) = u2(λ ) = u3(λ ) = 0}. (2.3)

As usual, for a given function h : T ∗M 7→R denote by
−→
h the corresponding Hamil-

tonian vector field defined by the relation i−→h σ =−d h. Then by the direct computa-
tions (see, for example, [10]) the characteristic line distribution C satisfies

C = span{u4
−→u 2−u5

−→u 1}. (2.4)
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3 Jacobi curves of abnormal extremals

Now we are ready to define the Jacobi curve of an abnormal extremal of D. For
this first lift the distribution D to (D2)⊥, namely considered the distribution J on
(D2)⊥ such that

J (λ ) = {v ∈ Tλ (D
2)⊥ : dπ(v) ∈ D(π

(
λ )
)
}. (3.1)

Note that dimJ = n− 1 and C ⊂J by (2.4) . The distribution J is called the
lift of the distribution D to (D2)⊥\(D3)⊥.

Given a segment γ of an abnormal extremal (i.e. of a leaf of the 1-characteristic
foliation) of D, take a sufficiently small neighborhood Oγ of γ in (D2)⊥ such that the
quotient N = Oγ/(the characteristic one-foliation) is a well defined smooth mani-
fold. The quotient manifold N is a symplectic manifold endowed with the symplectic
structure σ̄ induced by σ |(D2)⊥ . Let

φ : Oγ → N (3.2)

be the canonical projection on the factor. Define the following curves of subspaces
in Tγ N:

λ 7→ φ∗
(
J (λ )

)
, ∀λ ∈ γ. (3.3)

Informally speaking, these curves describe the dynamics of the distribution J w.r.t.
the characteristic 1-foliation along the abnormal extremal γ .

Note that there exists a straight line, which is common to all subspaces appearing
in (3.3) for any λ ∈ γ . So, it is more convenient to get rid of it by a factorization. In-
deed, let e be the Euler field on T ∗M, i.e., the infinitesimal generator of homotheties
on the fibers of T ∗M. Since a transformation of T ∗M, which is a homothety on each
fiber with the same homothety coefficient, sends abnormal extremals to abnormal
extremals, we see that the vector ē = φ∗e(λ ) is the same for any λ ∈ γ and lies in
any subspace appearing in (3.3). Let

Jγ(λ ) = φ∗
(
J (λ )

)
/{Rē}, ∀λ ∈ γ (3.4)

The (unparametrized) curve λ 7→ Jγ(λ ), λ ∈ γ is called the Jacobi curve of the
abnormal extremal γ . It is clear that all subspaces appearing in (3.4) belong to the
space

Wγ = {v ∈ Tγ N : σ̄(v, ē) = 0}/{Rē}. (3.5)

and that
dimJγ(λ ) = n−3. (3.6)

The space Wγ is endowed with the natural symplectic structure σ̃γ induced by σ̄ .
Also dimWγ = 2(n−3).

Given a subspace L of Wγ denote by L∠ the skew-orthogonal complement of L
with respect to the symplectic form σ̃γ , L∠ = {v∈Wγ ,σγ(v, `) = 0 ∀`∈ L}. Recall
that the subspace L is called isotropic if L ⊆ L∠, coisotropic if L∠ ⊆ L, and La-
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grangian, if L = L∠. Directly from the definition, the dimension of an isotropic sub-
space does not exceed 1

2 dimWγ , and a Lagrangian subspace is an isotropic subspace
of the maximal possible dimension 1

2 dimWγ . The set of all Lagrangian subspaces
of Wγ is called the Lagrangian Grassmannian of Wγ .

It is easy to see ([10, 23]) that the Jacobi curve of an abnormal extremal consists
of Lagrangian subspaces, i.e. it is a curve in the Lagrangian Grassmannian of Wγ . In
the case n ≥ 5 (equivalently, dim Wγ ≥ 4) curves in the Lagrangian Grassmannian
of Wγ have a nontrivial geometry with respect to the action of the linear symplectic
group and any symplectic invariant of Jacobi curves of abnormal extremals produces
an invariant of the original distribution D.

4 Reduction to geometry of curves in projective spaces

In the earlier works [3, 23] invariants of Jacobi curves were constructed using the
notion of the cross-ratio of four points in Lagrangian Grassmannians analogous to
the classical cross-ratio of four point in a projective line. Later, we developed a
different method, leading to the construction of canonical bundles of moving frames
and invariants for quite general curves in Grassmannians and flag varieties [12, 14].
The geometry of Jacobi curves Jγ in the case of rank 2 distributions can be reduced
to the geometry of the so-called self-dual curves in the projective space PWγ .

For this first one can produce a curve of flags of isotropic/coisotropic subspaces
of Wγ by a series of osculations together with the operation of taking skew symmet-
ric complements. For this, denote by C(Jγ) the tautological bundle over Jγ : the fiber
of C(Jγ) over the point Jγ(λ ) is the linear space Jγ(λ ). Let Γ (Jγ) be the space of
all smooth sections of C(Jγ). If ψ : (−ε,ε) 7→ γ is a parametrization of γ such that
ψ(0) = λ , then for any i≥ 0 define

J(i)γ (λ ) := span{ d j

dτ j `
(
ψ(t))

∣∣
t=0 : ` ∈ Γ (Jγ),0≤ j ≤ i} (4.1)

J(−i)
γ (λ ) =

(
J(i)γ (λ )

)∠ (4.2)

For i > 0 we say that the space J(i)γ (λ ) is the i-th osculating space of the curve Jγ at
λ .

Note that Jγ = J(0)γ . Directly from the definitions the subspaces J(i)γ (λ ) are

coisotropic for i > 0 and isotropic for i < 0 and the tuple {J(i)γ (λ )}i∈Z defines a

filtration of Wγ . In other words, the curve λ 7→ {J(i)γ (λ )}i∈Z is a curve of flags of
Wγ . Besides, it can be shown [23] that

dim J(1)(λ )−dim J(0)(λ ) = dim J(0)(λ )−dim J(−1)(λ ) = 1,
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which in turn implies that dim J(i)(λ )−dim J(i−1)(λ ) ≤ 1, i.e. the jump of dimen-
sions between the consecutive subspaces of the filtration {J(i)γ (λ )}i∈Z is at most 1.

This together with (3.6) implies that dim J(i)γ (λ )≤ n−3+ i for i > 0.

We say that λ is a regular point of (D2)⊥\(D3)⊥ if dim J(i)γ (λ ) = n− 3+ i for

0 < i ≤ n− 3 or, equivalently, if J(n−3)
γ (λ ) = Wγ . A rank 2 distribution D is called

of maximal class at a point q ∈M if at least one point in π−1(q)∩ (D2)⊥ is regular.
Since by (2.4) the characteristic distribution C generated by a vector field depending
algebraically on the fibers (D2)⊥, if D is of maximal class at a point q ∈M, then the
set of all regular points of π−1(q)∩(D2)⊥ is non-empty open set in Zariski topology.
The same argument is used to show that the set of germs of rank 2 distributions of
maximal class is generic.

If D is of maximal class at q and n ≥ 5, then by necessity dimD3(q) = 5. The
following question is still open: Does there exist a rank 2 distribution with dimD3 =
5 such that it is not of maximal class on some open set of M? We proved that the
answer is negative for n≤ 8 and we have strong evidences that the answer is negative
in general.

Remark 2. Note that from (2.4) it follow that if a rank 2 distribution D is of maximal
class at a point q ∈ M then the set of all lines {dπ

(
C (λ )

)
: λ ∈ RD ∩π−1(q)} is

an open and dense subset of the projectivization PD(q) of the plane D(q), where, as
before, π : T ∗M→M is the canonical projection. �

From now on we will work with rank 2 distributions of maximal class. In this
case dimJ(4−n)

γ (λ ) = 1, i.e. the curve J(4−n)
γ is a curve in the projective space PWγ .

Moreover, the curve of flags λ 7→ {J(i)γ (λ )}n−3
i=3−n, λ ∈ γ is the curve of complete

flags and the space J(i)γ (λ ) is the (i+n−4)th-osculating space of the curve J(4−n)
γ .

In other words, the whole curve of complete flags λ 7→ {J(i)γ (λ )}n−3
i=3−n, λ ∈ γ can

be recovered from the curve J(4−n)
γ and the differential geometry of Jacobi curves of

abnormal extremals of rank 2 distributions is reduced to the differential geometry of
curves in projective spaces.

5 Canonical projective structure on curves in projective spaces

The differential geometry of curves in projective spaces is the classical subject, es-
sentially completed already in 1905 by E.J. Wilczynski ([21]). In particular, it is
well known that these curves are endowed with the canonical projective structure,
i.e., there is a distinguished set of parameterizations (called projective) such that the
transition function from one such parametrization to another is a Möbius transfor-
mation. Let us demonstrate how to construct it for the curve λ 7→ J(4−n)

γ (λ ), λ ∈ γ .

As before, let C(J(4−n)
γ ) be the tautological bundle C(J(4−n)

γ ) over J(4−n)
γ . Set

m = n− 3. Here we use a “naive approach”, based on reparametrization rules for
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certain coefficient in the expansion of the derivative of order 2m of certain sec-
tions of C(J(4−n)

γ ) w.r.t. to the lower order derivatives of this sections. For the more
algebraic point of view, based on a Tanaka-like theory of curves of flags and sl2-
representations see [8, 12].

Take some parametrization ψ : I 7→ γ of γ , where I is an interval in R. By above,
for any section ` of C(J(4−n)

γ ) one has that

span
{ d j

dt j `
(
ψ(t)

)
| 0≤ j ≤ 2m−1

}
=Wγ . (5.1)

A curves in the projective space PWγ satisfying the last property is called regular
(or convex). It is well known that there exists the unique, up to the multiplication by
a nonzero constant, section E of C(J(4−n)

γ ), called a canonical section of C(J(4−n)
γ )

with respect to the parametrization ψ , such that

d2m

dt2m E
(
ψ(t)

)
=

2m−2

∑
i=0

Bi(t)
di

dt i E
(
ψ(t)

)
, (5.2)

i.e. the coefficient of the term d2m−1

dt2m−1 E
(
ψ(t)

)
in the linear decomposition of d2m

dt2m E
(
ψ(t)

)
w.r.t. the basis

{ di

dt i E
(
ψ(t)

)
: 0≤ i≤ 2m−1

}
vanishes.

Further, let ψ1 be another parameter, Ẽ be a canonical section of C(J(4−n)
γ ) with

respect to the parametrization ψ1, and υ = ψ−1 ◦ψ1. Then directly from the defini-
tion it easy to see that

Ẽ
(
ψ1(τ)

)
= c(υ ′(τ))

1
2−mE(ψ(t)) (5.3)

for some non-zero constant c.
Now let B̃i(τ) be the coefficient in the linear decomposition of d2m

dτ2m Ẽ
(
ψ1(τ)

)
w.r.t. the basis

{ di

dτ i Ẽ
(
ψ1(t)

)
: 0≤ i≤ 2m−1

}
as in (5.2). Then, using the relation

(5.3) it is not hard to show that the coefficients B2m−2 and B̃2m−2 in the decomposi-
tion (5.2), corresponding to parameterizations ψ and ψ1, are related as follows:

B̃2m−2(τ) = υ
′(τ)2B2m−2(υ(τ))−

m(4m2−1)
3

S(υ)(τ), (5.4)

where S(υ) is the Schwarzian derivative of υ , S(υ) = d
dτ

(
υ ′′
2υ ′

)
−
(

υ ′′
2υ ′

)2
.

From the last formula and the fact that Sυ ≡ 0 if and only if the function υ is
Möbius it follows that the set of all parameterizations ϕ of γ such that

B2m−2 ≡ 0 (5.5)

defines the canonical projective structure on γ . Such parameterizations are called
the projective parameterizations of the abnormal extremal γ . If ψ and ψ1 are two
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projective parametrizations, then there exists a Möbius transformation υ such that
ψ1 = ψ ◦υ .

Note that the curve J(4−n)
γ is not an arbitrary regular curve in the projective space

PW . It satisfies the following additional property:

(S1) The (n−4)th-osculating space of J(4−n)
γ at any point λ is Lagrangian.

As shown already by Wilczynski [21] such curves are self-dual in the following
sense:

(S2) The curve (J(n−4)
γ )∗ in the projectivization PW ∗γ of the dual space W ∗γ , which

is dual to the curve of hyperplanes J(n−4)
γ obtained from the original curve J(4−n)

γ by

the osculation of order 2(n−4), is equivalent to the original curve J(4−n)
γ , i.e. there

is a linear transformation A : W 7→W ∗ sending J(n−4)
γ onto (J(n−4)

γ )∗.
Note that in contrast to property (S1) the formulation of property (S2) does not

involve a symplectic structure on Wγ . However, it can be shown [21, 17] that if the
property (S2) holds then there exists a unique, up to a multiplication by a nonzero
constant, symplectic structure on Wγ such that the property (S1) holds (here it is
important that dim Wγ is even; similar statement for the case of odd dimensional
linear space involves nondegenerate symmetric forms instead of skew-symmetric
ones). Since in our case the symplectic structure on Wγ is a priori given, in the
sequel we will consider projective spaces of linear symplectic spaces only and by
self-dual curves we will mean curves satisfying property (S1).

Using the coefficients of the decomposition (5.2) w.r.t. a projective parameter t
one can construct the (relative) invariants of the unparametrized curve J(4−n)

γ , called
the Wilczynski invariants. Since we shall not use these invariants in the sequel, we
will not give here their construction referring the interested reader to [8, 12]. Note
only that in the case of a self-dual curve in such decomposition also B2m−3(t) ≡ 0
and the first nontrivial Wilczynski invariant is B2m−4(t)dt4, i.e. this is the homo-
geneous function of degree 4 on each tangent line to our curve. As shown in [24],
for rank 2 distributions in R5 with maximal possible small growth vector (2,3,5),
this invariant, calculated along each abnormal extremal, gives the classical Cartan
invariant of [7].

6 Canonical frames for rank 2 distributions of maximal class

Now let RD be the set if all regular points of (D2)⊥\(D3)⊥. Denote by Pλ the set
of all projective parameterizations ψ on the characteristic curve γ , passing through
λ , such that ψ(0) = λ . Let

ΣD = {(λ ,ψ) : λ ∈RD,ψ ∈Pλ}.
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Actually, ΣD is a principal bundle over RD with the structural group of all Möbius
transformations, preserving 0 and dim ΣD = 2n−1. The main results of [9, 10] can
be summarized in the following:

Theorem 2. For any rank 2 distribution in Rn with n > 5 of maximal class there
exists the canonical, up to the action of Z2, frame on the corresponding (2n− 1)-
dimensional manifold ΣD so that two distributions from the considered class are
equivalent if and only if their canonical frames are equivalent. The group of sym-
metries of such distributions is at most (2n−1)-dimensional and this upper bound
is sharp. All distributions from the considered class with (2n− 1)-dimensional Lie
algebra of infinitesimal symmetries is locally equivalent to the distribution D((0,...0)
generated by the vector fields X1 and X2 from (1.3)-(1.4) with all ri equal to 0 or,
equivalently, associated with the underdetermined ODE z′(x) =

(
y(n−3)(x)

)2. The
symmetry algebra of this distribution is isomorphic to a semidirect sum of gl(2,R)
and (2n− 5)-dimensional Heisenberg algebra n2n−5 such that gl(2,R) acts irre-
ducibly on a complement of the center of n2n−5 to n2n−5 itself .

7 Canonical frames for rank 2 distributions of maximal class
with distinguish parametrization on abnormal extremals

Let us show that for regular control systems on rank 2 distributions in the sense
Definition 2 a special parametrization, up to a shift, can be distinguished on each
abnormal extremal lying in RD. Let Vq be the set of the admissible velocities of the
control system under consideration at the point q ∈ M. Let R̂ be a subset of RD
consisting of all points λ such that the image under dπ of the tangent line at λ to
the abnormal extremal passing through λ is a regular line in D

(
π(λ )

)
in the sense

of Definition 1 (here , as before π : T ∗M→M is the canonical projection). Then by
Definition 2 and Remark 2 the set R̂ is a non-empty open subset of (D2)⊥. Given a
regular line L in D(q) let w(L) be the admissible velocity in L of the smallest norm.
Clearly w(L) does not depend on the choice of a norm in D(q), but in general it may
be defined up to a sign (for example, in the sub-(pseudo) Riemannian case).

A parametrization ψ : I 7→ γ of an abnormal extremal γ living in R̂ is called
weakly canonical (with respect to the regular control system given by the set of
admissible velocities {Vq}q∈M) if

dπ
( d

dt
γ(ψ(t))

)
= w

(
spandπ

( d
dt

γ(ψ(t))
))

(7.1)

This parametrization is defined up to a shift and maybe up to the change of orien-
tation. In the case when the orientation is not fixed by (7.1) we can fix the orienta-
tion as follows: Since the curve J(4−n)

γ is self-dual, given a parametrization ψ on γ ,

among all canonical sections of the tautological bundle C(J(4−n)
γ ) (defined up to the

multiplication by a nonzero constant) there exists the unique, up to a sign, section E
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of such that (5.2) holds and∣∣∣∣σ̃γ

(
dn−3

dtn−3 E
(
ψ(t)

)
,

dn−4

dtn−4 E
(
ψ(t)

))∣∣∣∣≡ 1. (7.2)

This section E will be called the strongly canonical section of C(J(4−n)
γ ) with

respect to the parametrization ψ . The parametrization ψ is called the canonical
parametrization of the abnormal extremal γ if (7.1) holds and

σ̃γ

(
dn−3

dtn−3 E
(
ψ(t)

)
,

dn−4

dtn−4 E
(
ψ(t)

))
≡ 1. (7.3)

We finally obtain the parametrization of γ defined up to a shift only.
Finally let R̃ be a subset of R̂ where the vector field consisting of the tan-

gent vectors to the abnormal extremals parameterized by the canonical parameter
is smooth. Note that R̃ is an open and dense subset of R̂. For affine control systems
with one input and a non-zero drift and for sub-Riemannian structures R̃ coincides
with the set RD of the regular points in (D2)⊥\(D3)⊥.

Note that the canonical parametrization is preserved by the homotheties of the
fibers of (D2)⊥. Namely, if δs is the flow of homotheties on the fibers of T ∗M:
δs(p,q) = (es p,q), q ∈ M, p ∈ T ∗q M or, equivalently, the flow generated by the
Euler field e generates this flow, then ψ : I 7→ γ is the canonical parametrization on
an abnormal extremal γ if and only if δs ◦ψ is the canonical parametrization on the
abnormal extremal δs ◦ γ .

The main goal of this section is to prove the following

Theorem 3. Given a regular control system on a rank 2 distribution D of maximal
class one can assign to it a canonical, up to the action of Z2, frame on the set
R̃ defined above so that two objects from the considered class are micro-locally
equivalent if and only if their canonical frames are equivalent.

Proof. First, let h be the vector field consisting of the tangent vectors to the abnor-
mal extremals parameterized by the canonical parameter.

Second, given λ ∈ (D2)⊥ denote by V (λ ) the tangent space to the fiber of the
bundle π : (D2)⊥ 7→M (the vertical subspace of Tλ (D2)⊥),

V (λ ) = {v ∈ Tλ (D
2)⊥,π∗v = 0}. (7.4)

It is easy to show ([10, 23]) that

dφ
(
V (λ )⊕C (λ )

)
= J(−1)

γ (λ ) modRē, (7.5)

where φ is as in (3.2), ē = φ∗e with e being the Euler field, and γ is the abnormal
extremal passing through λ . Define also the following subspaces of Tλ (D2)⊥:

J (i)(λ ) = {w ∈ Tλ (D
2)⊥ : dφ(w) ∈ J(i)γ (λ ) modRē}. (7.6)
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Directly from the definition, if λ ∈RD, then

[C ,J (i)](λ ) = J (i+1)(λ ). (7.7)

Also, if V (i)(λ ) =V (λ )∩J (i)(λ ), then

J (i)(λ ) =V (i)(λ )⊕C (λ ) ∀i≤ 0. (7.8)

Moreover, it can be shown ([10, Lemma 2]) that

[V (i),V (i)]⊆V (i), [V (i),J (i)]⊆J (i), ∀i≤ 0. (7.9)

Let E be the strongly canonical section of C(J(4−n)
γ ) with respect to the canoni-

cal parametrization ψ of the abnormal extremal γ (as defined by (7.2)). Then (7.5)
implies that a vector field ε1 such that

(A1) dφ
(
ε1(λ )

)
≡ E mod ē,

(A2) ε1 is the section of the vertical distribution V

is defined modulo the Euler field e. Note that conditions (A1) and (A2) also imply
that ε1 is the section of V (4−n).

Lemma 1. Among all vector fields ε1 satisfying conditions (A1) and (A2), there ex-
ists the unique, up to a multiplication by −1, vector field such that[

ε1, [h,ε1]
]
(λ ) ∈ span{e(λ ),h(λ ),ε1(λ )}. (7.10)

Proof. Let ε̃1 be a vector field satisfying the conditions (A1) and (A2). Then ε̃1 is
the section of V (4−n). Using (7.8) and (7.9) for n > 5 and also the definition of J
given by (3.1) in the case n = 5, we get[

ε̃1, [h, ε̃1]
]
≡ k[h, ε̃1] modspan{e,h, ε̃1} (7.11)

for some function k. Now let ε1 be another vector field satisfying conditions (A1)
and (A2). Then by above there exists a function µ such that

ε1 =±ε̃1 +µe. (7.12)

From the fact that the canonical parametrization is preserved by the homotheties
of the fibers of (D2)⊥ it follows that [e,h] = 0 . Also from the normalization condi-
tion (7.2) it is easy to get that

[e,ε1] =−
1
2

ε1 modspan(e). (7.13)

Then [
e, [h,ε1]

]
=−

1
2
[h,ε1] mod(e,h), (7.14)
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From this and (7.12) it follows that

[
ε1, [h,ε1]

]
≡
(
k∓

µ

2
)
[h,ε1] span{e,h,ε1}, (7.15)

which implies the statement of the lemma: the required vector ε̃1 is obtained by
taking µ =±2k. �

Now we are ready to construct the canonical frame on the set R̃. One option is
to take as a canonical frame the following one:{

e,h,ε1,{(adh)i
ε1}2n−7

i=1 , [ε1,(adh)2n−7
ε1]
}
, (7.16)

where ε1 is as in Lemma 1. Let us explain why it is indeed a frame. First the vector
fields

{
e,h,ε1,{(adh)iε1}2n−7

i=1

}
are linearly independent on R̃ due to the relation

(7.7). Besides [ε1,(adh)2n−7ε1](λ ) /∈J (n−3)(λ ). Otherwise, ε1(λ ) belongs to the
kernel of the form σ(λ )|(D2)⊥ and therefore it must be collinear to h. We get a

contradiction. Therefore the tuple of vectors in (7.16) constitute a frame on R̃.
The construction of the frame (7.16) is intrinsic. However, in order to guaranty

that two objects from the considered class are equivalent if and only if their canoni-
cal frames are equivalent, we have to modify this frame such that it will contain the
basis of the vertical distribution V (defined by 7.4). For this, replace the vector fields
of the form (adh)iε1 for 1 ≤ i ≤ n− 4 by their projections to V (i) with respect to
the splitting (7.8), i.e. their vertical components with respect to this splitting. This
completes the construction of the required canonical frame (defined up to the action
of the required finite groups). The proof of Theorem 3 is completed.

As a direct consequence of Theorem 3 we have

Corollary 1. For a regular control system on a rank 2 distribution D of maximal
class the dimension of pseudo-group of micro-local symmetries does not exceed
2n−3.

8 Symplectic curvatures for the structures under consideration

Before proving Theorem 1 about the most symmetric models for geometric struc-
tures under consideration, we want to reformulate this theorem in more geometric
terms. For this we distinguish special invariants for this structures called the sym-
plectic curvatures. They are functions on the open subset R̃ of RD, defined in the
beginning of the previous section.

From the construction of the previous section all curves J(4−n)
γ are parameterized

by the canonical (up to a shift) parametrization ψ given by (7.1) (and maybe also by
(7.3)). The geometry of parameterized regular self-dual curves in projective spaces
is simpler than of unparametrized ones: instead of forms (relative invariants) on the
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curve we obtain invariant, which are scalar-valued function on the curve ([25]). The
main result of [25] (Theorem 2 there) can be reformulated as follows (see also [17]):
if E is a (strongly) canonical section of C(J(4−n)

γ ) with respect to the (canonical)
parametrization ψ , then there exist m functions ρ1(t), . . . ,ρm(t) such that

E(2m)
(
ψ(t)

)
=

m

∑
i=1

(−1)i+1 dm−i

dtm−i

(
ρi(t)

dm−i

dtm−iE
(
ψ(t)

))
. (8.1)

Note that formula (8.1) resembles the classical normal form for the formally self-
adjoint linear differential operators [19][§1].

By constructions, the functions ρ1(t), . . . ,ρm(t) are invariants of the parameter-
ized curve t 7→ J(4−n)

γ

(
ψ(t)

)
with respect to the action of the linear symplectic group

on Wγ . We call the function ρi(t) the ith symplectic curvature of the parametrized

curve t 7→ J(4−n)
γ

(
ψ(t)

)
. Besides, the functions ρ1(t), . . . ,ρm(t) constitute the funda-

mental system of symplectic invariant of the parametrized curve t 7→ J(4−n)
γ

(
ψ(t)

)
,

i.e. they determine this curve uniquely up to a symplectic transformation. Moreover,
these invariants are independent: for any tuple of m functions ρ1(t), . . . ,ρm(t) on the
interval I ⊆ R there exists a parameterized regular self-dual curve t 7→Λ(t), t ∈ I, in
the projective space of dimension 2m−1 with the ith symplectic curvature equal to
ρi(t) for any 1≤ i≤ m.

Also in the sequel we will need the following

Remark 3. Assume that E is the strongly canonical section of C(J(4−n)
γ ) with respect

to the parametrization ψ . Using the fact that the spaces span
{ d j

dt jE
(
ψ(t)

)}m

j=1
are

Lagrangian and the condition (7.2), it is easy to show that

σ̃γ

( d j

dt jE
(
ψ(t)

)
,

di

dt iE
(
ψ(t)

))
are either identically equal to 0, if i+ j < 2m−1 or to ±1, if i+ j = 2m−1, or they
are polynomial expressions (with universal constant coefficients) with respect to the
symplectic curvatures ρ1(t), . . . ,ρm(t) and their derivatives, if i+ j > 2m. �

Taking the ith symplectic curvature for Jacobi curves (parameterized by the
canonical parameter) of all abnormal extremals living in R̃, we obtain the invari-
ants of the regular control systems, called the ith symplectic curvature and denoted
also by ρi. The symplectic curvatures are scalar valued functions on the set R̃.

9 The maximally symmetric models

Now we will find all structures from the considered classes having the pseudo-group
of micro-local symmetries of dimension equal to 2n−3. As a consequence of Corol-
lary 1 if an object from the considered class has the pseudo-group of micro-local
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symmetries of dimension equal to 2n−3 then all structure functions of the canoni-
cal frame (7.16) must be constant. Note that formula (8.1) can be rewritten in terms
of the canonical frame (7.16) as follows

[h,ε2m] =
m

∑
i=1

(−1)i+1(adh)m−i
(

ρi
(
adhm−i

ε1

)
mod span{e,h}, (9.1)

where ρi are the ith symplectic curvatures of a structures under consideration. This
implies that the symplectic curvatures of all order must be constant for any structure
from the considered classes having 2n−3-dimensional pseudo-group of micro-local
symmetries . This implies that the following theorem is equivalent to Theorems 1

Theorem 4. Given any tuples of n−3 numbers (r1, . . . ,rn−3) there exists the unique,
up to micro-local equivalence, regular control system on a rank 2 distribution of
maximal class in Rn with n ≥ 5 having the group of micro-local symmetries of
dimension 2n− 3 and the ith symplectic curvature identically equal to ri for any
1≤ i≤ n−3. Such regular control system is micro-locally equivalent to the system
A(r1,...,rn−3) defined by (1.2)-(1.4).

Proof. First, let us prove the uniqueness. Take a structure from the considered class
having the pseudo-group of micro-local symmetries of dimension 2n− 3 and the
ith symplectic curvature identically equal to ri for any 1≤ i≤ m, where, as before,
m = n− 3. Then, as was already mentioned, all structure functions of the canoni-
cal frame (7.16) must be constant. The uniqueness will be proved if we will show
that all nontrivial structure function (i.e. those that are not prescribed by the nor-
malization conditions for the canonical frame) are uniquely determined by the tuple
(r1, . . . ,rn−3).

Let ε1 be as in the Lemma 1. Denote

εi+1 := (adh)i
ε1, ν = [ε1,ε2m] (9.2)

In this notations the canonical frame (7.16) is {e,h,ε1, . . . ,ε2m,η}.

1. Let us prove that

[e,ε1] =−
1
2

ε1 (9.3)

where, as before e is the Euler field. Indeed, from (7.14)

[e,ε1] =−
1
2

ε1 +ae (9.4)

where a is constant by our assumptions. Then, using the Jacobi identity and the
fact that

[e,h] = 0 (9.5)

we get that

[e,ε2] =
[
e, [h,ε1]

]
=
[
h, [e,ε1]

]
= [h,−1

2
ε1 +ae] =−1

2
ε2 (9.6)
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Further, from the normalization condition (7.10) and formula (9.4) it follows that[
e, [ε1,ε2]

]
∈ span{e(λ ),h(λ ),ε1(λ )} (9.7)

On the other hand, using the Jacobi identity and formulas (9.4),(9.5),(9.6), we
get that [

e, [ε1,ε2]
]
=
[
[e,ε1],ε2

]
+
[
ε1, [e,ε2]

]
= [−1

2
ε1 +ae,ε2]−

1
2
[ε1,ε2]≡−

a
2

ε2 mod span{e(λ ),h(λ ),ε1(λ )},

which together with (9.7) implies that a = 0.
2. By analogy with the chain of the equalities (9.7) we can prove that

[e,εi] =−
1
2

εi, ∀1≤ i≤ 2m, (9.8)

which in turn implies by the Jacobi identity that[
e, [εi,ε j]

]
=−[εi,ε j], ∀1≤ i, j ≤ 2m. (9.9)

In particular, [e,η ] =−η .
3. Let us show that

[h,ε2m] =
m−1

∑
i=1

(−1)i+1riε2(m−i) (9.10)

From (9.1) and our assumptions it follows that

[h,ε2m] =
m−1

∑
i=1

(−1)i+1riε2(m−i)+ γe+δh (9.11)

for some constants γ and δ . Applying ade to both sides of (9.11) and using the
Jacobi identity and formulas (9.5) and (9.8), we will get that γ = δ = 0, which
implies (9.11).

4. Let us prove that
[εi,ε j] = di jη (9.12)

for some constants di j Indeed, in general

[εi,ε j] = bi je+ ci jh+di jη +
2m

∑
k=1

ak
i jεk (9.13)

where ak
i j, bi j, ci j and di j are constant by our assumptions. Applying ade to both

sides of (9.13) and using the Jacobi identity and the formulas (9.5), (9.8), and
(9.9), we get

−[εi,ε j] =−di jη−
1
2

2m

∑
k=1

ak
i jεk (9.14)



On geometry of affine control systems with one input 19

Comparing (9.13) and (9.14) we get that ak
i j = bi j = ci j = 0, which implies (9.12).

5. Moreover, by Remark 3 and the definition of the vector field η (see (9.2)) the
constants di j from (9.12) are either identically equal to 0, if i+ j < 2m or equal
to (−1)i−1, if i+ j = 2m+1, or they are polynomial expressions (with universal
constant coefficients) with respect to the constant symplectic curvatures r1 . . . ,rm,
if i+ j > 2m.

6. The remaining brackets of the canonical frame are obtained iteratively from the
brackets considered in the previous items.

Therefore all nontrivial structure functions of the canonical frame are determined
by the tuple (r1, . . . ,rn−3), which completes the proof of uniqueness.

To prove the existence one checks by the direct computations that the models
A(r1,...,rm) have the prescribed symplectic curvatures and that all structure functions
of their canonical frame are constant similarly to the proof of the existence part of
Theorem 3 in [10], devoted to the computation of the canonical frame for D(0,...,0).
�

Remark 4. As a matter of fact it can be shown that Theorem 3 (with a modified set
R̃), Corollary 1, and Theorem 4 are true if we replace the regularity condition for
control systems given in Definition 2 by the following weaker one: for any point
q the curve of admissible velocities Vq does not belong entirely to a line through
the origin. One only needs more technicalities in the description of the set R̃ in
Theorem 3. �.
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